ฟิสิกส์
ฟิสิกส์ (อังกฤษ: Physics, กรีก: φυσικός [phusikos], "เป็นธรรมชาติ" และ φύσις [phusis], "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร [1] และ พลังงาน [2] [3] ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่างๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น
นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาลจึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว[ต้องการอ้างอิง]
ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น
ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อยๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อย ฟิสิกส์พลาสมา สำหรับงานวิจัย ฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และ นักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรือ อธิบายการทดลองใหม่ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ๆ
ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น
งานวิจัยทางฟิสิกส์
ฟิสิกส์เชิงทดลอง กับ ฟิสิกส์เชิงทฤษฎี
งานวิจัยทางฟิสิกส์แบ่งออกได้เป็น 2 ประเภทใหญ่ ๆ ที่แตกต่างกันอย่างชัดเจนดังนี้
- ฟิสิกส์เชิงทดลอง (experimental physics)
ในปัจจุบันโฉมหน้าของการทดลองทางฟิสิกส์แตกต่างจากการทดลองของนักฟิสิกส์ในอดีตเมื่อร้อยกว่าปีที่แล้วมาก ในสมัยก่อนนับตั้งแต่กาลิเลโอเป็นต้นมา การทดลองเพื่อแสวงความรู้ใหม่ๆที่สามารถพลิกโฉมความรู้เดิมที่มีอยู่อาจทำได้โดยการทดลองที่ไม่ซับซ้อนมากอาจดำเนินการทดลองได้โดยคนเพียงคนเดียว แม้กระทั่งช่วงระหว่างปี ค.ศ. 1840 - 1900 ซึ่งเป็นช่วงบุกเบิกเรื่องแรงแม่เหล็กไฟฟ้าอุปกรณ์ของไมเคิล ฟาราเดย์ก็สามารถสร้างได้อย่างง่ายๆด้วยตนเอง แม้กระทั่งอุปกรณ์ที่นำไปสู่การค้นพบอิเล็กตรอนซึ่งก็คือหลอดรังสีแคโทดก็ไม่ได้ซับซ้อนเมื่อเทียบกับหลอดภาพของจอคอมพิวเตอร์ในปัจจุบัน
ในยุคปัจจุบันการสร้างเครื่องมือเพื่อบุกเบิกพรมแดนใหม่ในฟิสิกส์ โดยเฉพาะในส่วนของวิชาฟิสิกส์อนุภาคและจักรวาลวิทยาเป็นเรื่องที่ สลับซับซ้อนมาก บางโครงการอย่าง Gravity Probe B[1] ซึ่งเป็นดาวเทียมทำหน้าที่ตรวจสอบทฤษฎีสัมพัทธภาพทั่วไปของไอน์สไตน์ก็ต้องใช้เวลาในการดำเนินโครงการถึง 40 กว่าปี (ตั้งแต่เสนอโครงการโดย Leonard Schiff เมื่อปี ค.ศ. 1961 ซึ่งเพิ่งจะได้ปล่อยดาวเทียมสู่วงโคจรเมื่อปี ค.ศ. 2004 ซึ่งตัว Schiff เองก็ถึงแก่กรรมไปก่อนหน้านั้นแล้ว) โครงการบางโครงการก็ต้องอาศัยการร่วมมือกันในระดับนานาชาติที่ต้องสนับสนุนทั้งกำลังคนและงบประมาณ เช่น โครงการเครื่องเร่งอนุภาค Large Hadron Collider (LHC) [2] ที่ CERN (เป็นศูนย์วิจัยที่ปรากฏในตอนต้นของนิยาย เทวากับซาตาน ของ แดน บราวน์) ก็ต้องใช้อุโมงค์ใต้ดินเป็นวงแหวนที่มีเส้นรอบวงถึง 27 กิโลเมตร ซึ่งเป็นเทคโนโลยีที่แพงเกินกว่าที่จะเป็นโครงการที่สร้างโดยประเทศเดียว ในการที่จะเสนอขออนุมัติโครงการเพื่อสร้างการทดลองใหญ่โตที่แสนแพงเช่นนี้ต้องอาศัยความรู้ทางด้านฟิสิกส์เชิงทฤษฎีช่วยเป็นอย่างมาก หลายครั้งก่อนที่จะเสนอโครงการจะต้องมีการสร้างแบบจำลองที่ละเอียดและซับซ้อนเพื่อที่จะทำนายล่วงหน้าว่าเครื่องมือที่สร้างขึ้นจะวัดอะไรได้บ้างและผลการทดลองจะออกมาในลักษณะใด ตัวอย่างเช่น เครื่องเร่งอนุภาค LHC ก็ต้องมีการคำนวณมาก่อนว่ามวลของอนุภาคฮิกส์ ทำนายจากแบบจำลองSuper Symmetryจะอยู่ในระดับพลังงานใด จะตรวจวัดได้ไหมเป็นต้น ซึ่งแน่นอนว่า มวลของอนุภาคฮิกส์ จากแบบจำลองต่างๆ ก็เป็นเพียงหนึ่งในอีกหลายๆ ปรากฏการณ์ที่ฟิสิกส์ทฤษฎีทำทายไว้ล่วงหน้าให้ได้ก่อนสร้างเครื่องเร่งอนุภาคอย่าง LHC นั่นคือ นักฟิสิกส์ในปัจจุบันต้องมั่นใจถึงระดับหนึ่งว่าผลการทดลองจากโครงการต่างๆจะต้องคุ้มค่ากับเงินที่ลงทุนไป
จากขนาดของข้อมูลที่ได้ในแต่ละการทดลองใหญ่ๆในปัจจุบัน ทำให้นักฟิสิกส์ไม่สามารถทำอย่างสมัยก่อน เช่น Heinrich R. Hertz (ผู้ค้นพบคลื่นแม่เหล็กไฟฟ้า) ซึ่งสามารถทำการทดลอง นำผลการทดลองไปวิเคราะห์และสร้างทฤษฎีที่อธิบายได้ด้วยตนเองเพียงคนเดียว ในปัจจุบันการวิเคราะห์ข้อมูลที่มาจากการทดลองขนาดใหญ่ๆ เช่น เครื่องเร่งอนุภาค หรือ ดาวเทียมสำรวจอวกาศต่างๆ ต้องอาศัยความร่วมมือกัน ของสถาบันวิจัยหลายๆแห่งทั่วโลก ดังนั้นจึงไม่ใช่เรื่องแปลกในปัจจุบันที่นักฟิสิกส์บางคนอาจอุทิศเวลาทั้งหมดให้กับการวิเคราะห์ข้อมูลด้วยคอมพิวเตอร์เพียงอย่างเดียว ซึ่งนับเป็นขั้นตอนที่สำคัญมากก่อนที่นักฟิสิกส์เชิงทฤษฎี (ซึ่งโดยมากจะไม่ทราบรายละเอียดของวิธีการทดลอง) จะนำข้อมูลที่ย่อยแล้วไปตรวจสอบแบบจำลองที่ได้จากทฤษฎีเดิมที่มีอยู่ว่าสอดคล้องหรือแตกต่างอย่างไร ซึ่งจะนำไปสู่การปรับปรุงหรือค้นพบทฤษฎีฟิสิกส์ใหม่ในที่สุด
อย่างไรก็ดีกระแสหลักฟิสิกส์เชิงทดลองในปัจจุบันได้เปลี่ยนแนวทางจากการแสวงหาสุดเขตุแดนของทฤษฎีพื้นฐาน มาเป็นการนำเอาทฤษฎีพื้นฐานมาประยุกต์เป็นเทคโนโลยีที่สัมผัสได้ในชีวิตประจำวันมากกว่า ดังจะเห็นได้จากหัวข้อวิจัย Carbon nanotubes เป็นหัวข้อที่ได้รับการวิจัยอย่างกว้างขวาง และมีคนให้ความสนใจมากที่สุด เมื่อประเมินจาก h index [3] ในการทดลองที่มีขนาดย่อมลงมา เช่นในสาขาสสารควบแน่น หรือ นาโนเทคโนโลยี นักทดลองส่วนใหญ่สามารถวิเคราะห์ข้อมูลได้เองว่าเป็นไปตามทฤษฎีหรือไม่ และในบางครั้งก็อาจเสนอแบบจำลองใหม่ได้เองด้วย หน้าที่ของนักฟิสิกส์เชิงทฤษฎีจะเป็นผู้เชื่อมโยงข้อเท็จจริงที่ได้จากในแต่ละการทดลองที่หลากหลายเข้าด้วยกัน และหาแบบจำลองหลักที่สามารถอธิบายการทดลองได้ครอบคลุมกว้างขวางที่สุด ซึ่งรวมถึงการทดลองใหม่ๆที่จะตามมาในอนาตค
- ฟิสิกส์เชิงทฤษฎี (theoretical physics)
นักฟิสิกส์ในยุคปัจจุบัน หาได้ยากมากที่จะมีความชำนาญและเชี่ยวชาญในฟิสิกส์ทั้งสองประเภท (โดยนักฟิสิกส์รุ่นหลังที่มีความสามารถสูงทั้งสองด้าน ที่พอจะยกตัวอย่างได้คือ เอนริโก แฟร์มี) ซึ่งตรงกันข้ามกับนักทฤษฎีเคมีหรือนักทฤษฎีชีววิทยาที่มักจะเก่งด้านทดลองด้วย
สาขาหลักในฟิสิกส์
งานวิจัยฟิสิกส์ปัจจุบันแบ่งย่อยออกเป็นสาขาต่างๆ ซึ่งศึกษาธรรมชาติในแง่มุมที่ต่างกัน ฟิสิกส์ของสารควบแน่น เป็นวิชาซึ่งศึกษาคุณสมบัติของสสารในชีวิตประจำวันเช่นของแข็งและของเหลวจากระดับอันตรกิริยาระหว่างอะตอมขึ้นมา และประเมินกันว่าเป็นสาขาที่กว้างขวางที่สุดของฟิสิกส์ปัจจุบัน สาขาฟิสิกส์อะตอม โมเลกุล และทัศนศาสตร์ศึกษาพฤติกรรมของอะตอมและโมเลกุล และรูปแบบที่แสงถูกดูดกลืนและปล่อยออกจากอะตอมและโมเลกุล ฟิสิกส์อนุภาค หรือที่รู้จักกันในชื่อฟิสิกส์พลังงานสูง ซึ่งเกี่ยวข้องกับคุณสมบัติของอนุภาคระดับเล็กกว่าอะตอม เช่นอนุภาคพื้นฐานที่เป็นส่วนประกอบพื้นฐานของสสารทั้งหมด ฟิสิกส์ดาราศาสตร์ประยุกต์ใช้กฎทางฟิสิกส์เพื่ออธิบายปรากฏการณ์ทางดาราศาสตร์ต่างๆ ตั้งแต่ดวงอาทิตย์และวัตถุในระบบสุริยะไปจนถึงตัวเอกภพทั้งหมด
สาขาที่เกี่ยวข้อง
มีสาขาวิจัยมากมายที่เกี่ยวข้องกับฟิสิกส์และศาสตร์อื่นรวมกัน ตัวอย่างเช่น ชีวฟิสิกส์ เป็นสาขาที่หลากหลายและเกี่ยวข้องกับการศึกษาบทบาทของหลักการทางฟิสิกส์ในกระบวนการทางชีววิทยา
โสตศาสตร์ - ดาราศาสตร์ - ชีวฟิสิกส์ - ฟิสิกส์เชิงคำนวณ - อิเล็กทรอนิกส์ - วิศวกรรม - ธรณีฟิสิกส์ - วิทยาศาสตร์วัสดุ - คณิตศาสตร์ฟิสิกส์ - ฟิสิกส์การแพทย์ - เคมีฟิสิกส์ - ฟิสิกส์ของคอมพิวเตอร์ - เคมีควอนตัม - เทคโนโลยีสารสนเทศควอนตัม - พลศาสตร์ของพาหนะ
หัวข้อในฟิสิกส์
เคมี (อังกฤษ: chemistry) เป็นศาสตร์แห่งสสาร โดยเฉพาะอย่างยิ่งศึกษาปฏิกิริยาเคมี แต่ยังรวมถึงองค์ประกอบ โครงสร้างและคุณสมบัติด้วย[1] เคมีเกี่ยวข้องกับอะตอมและปฏิสัมพันธ์ระหว่างอะตอมกับอะตอม และโดยเฉพาะอย่างยิ่งกับคุณสมบัติของพันธะเคมี
บางครั้ง เคมีถูกเรียกว่าเป็น "วิทยาศาสตร์ศูนย์กลาง" เพราะเป็นศาสตร์ที่เชื่อมโยงฟิสิกส์กับวิทยาศาสตร์ธรรมชาติอื่น เช่น ธรณีวิทยากับชีววิทยา[3] เคมีเป็นสาขาหนึ่งของวิทยาศาสตร์กายภาพแต่แยกจากฟิสิกส์[5]
รากฐานของเคมีสามารถสืบย้อนไปถึงการปฏิบัติที่รู้จักกันในชื่อ การเล่นแร่แปรธาตุ ซึ่งมีการปฏิบัตินานหลายสหัสวรรษในหลายส่วนของโลก โดยเฉพาะอย่างยิ่งในตะวันออกกลาง[6]
นิยามและคำอธิบาย
เคมีโดยพื้นฐานแล้วนั้นมักจะเกี่ยวกับสสาร ปฏิสัมพันธ์ระหว่างสสารด้วยกันเอง หรือการปฏิสัมพันธ์ของสสารกับสิ่งที่ไม่ใช่สสารอย่างเช่นพลังงาน แต่ศูนย์กลางของเคมีโดยทั่วไปคือการปฏิสัมพันธ์ระหว่างสารเคมีด้วยกันในปฏิกิริยาเคมีโดยสารเคมีนั้นแปรรูปเป็นสารเคมีอีกชนิดหนึ่ง นี่อาจจะรวมไปถึงการฉายรังสีแม่เหล็กไฟฟ้าสู่สารเคมีหรือสารผสม (ในเคมีแสง) ในปฏิกิริยาเคมีที่ต้องการแรงกระตุ้นจากแสง อย่างไรก็ตาม ปฏิกิริยาเคมีนั้นเป็นเพียงส่วนหนึ่งของเคมีซึ่งศึกษาสสารในด้านอื่นๆ อีกมากมาย ตัวอย่างเช่น นักสเปกโตรสโคปีนั้นจะศึกษาปฏิสัมพันธ์ระหว่างแสงกับสสารโดยที่ไม่มีปฏิกิริยาเกิดขึ้น
ประวัติศาสตร์
วิวัฒนาการของวิชาเคมีแบ่งออกเป็นยุคต่างๆ ดังนี้ยุคก่อนประวัติศาสตร์ - ค.ศ. 500
- ชาวอียิปต์เป็นชนชาติแรกที่รู้จักใช้วิธีการทางเคมี และคำว่า Chemeia มีปรากฏในภาษาอียิปต์
- เดโมคริตัส (นักปราชญ์ชาวกรีก) แสดงความคิดเห็นในเรื่องโครงสร้างของสารโดยคิดหาเหตุผลเพียงอย่างเดียว ไม่ได้ทำการทดลองประกอบให้เห็นจริง
- อริสโตเติล รวบรวมทฤษฎีเกี่ยวกับสสาร โดยสรุปว่า สสารต่างๆ ประกอบขึ้นด้วยธาตุ 4 อย่าง คือ ดิน น้ำ ลม ไฟ ในสัดส่วนที่ต่างกันสำหรับสสารที่ต่างชนิดกัน
ยุคการเล่นแร่แปรธาตุ ค.ศ. 500 - ค.ศ. 1500
- นักเคมีสนใจในเรื่องการเล่นแร่แปรธาตุให้เป็นทองคำ แต่ไม่ประสบความสำเร็จ ประมาณ ค.ศ. 1100
- ความรู้ทางเคมีได้แพร่เข้าสู่ยุโรป ในปลายยุคนี้นักเคมีล้มเลิกความสนใจการเล่นแร่แปรธาตุ
- เริ่มสนใจค้นคว้าหายาอายุวัฒนะที่ใช้รักษาโรค
ยุคการเสาะแสวงหายาอายุวัฒนะ (ค.ศ. 1500 - 1600)
- เป็นยุค Latrochemistry
- นักเคมีพยายามค้นคว้าหายาอายุวัฒนะและบรรดายารักษาโรคต่างๆ
ยุคปัจจุบัน (ค.ศ. 1627 - 1691)
- เริ่มต้นจาก Robert Boyle "ศึกษาเคมีเพื่อเคมี"
- Robert Boyle "ศึกษาเคมีเพื่อความเจริญรุ่งเรืองของเคมีโดยเฉพาะ" และ "ใช้วิธีการทดลองประกอบการศึกษาเพื่อทดสอบความจริงและทฤษฎีต่างๆ"
- เลิกล้มทฤษฎีของอริสโตเติลที่เกี่ยวกับดิน น้ำ ลม ไฟ
- ลาวัวซิเยร์ (ค.ศ. 1743 - 1794) เป็นผู้ริเริ่มเคมียุคปัจจุบัน
- สตาฮ์ล (Stahl : ค.ศ. 1660 - 1734) ตั้งทฤษฎีฟลอจิสตัน (Phlogiston Theory)
- ลาวัวซิเยร์ ตั้งทฤษฎีแห่งการเผาไหม้ขึ้น ยังผลให้ทฤษฎีฟลอจิสตันต้องเลิกล้มไป
- John Dalton (ค.ศ. 1766 - 1844) ตั้งทฤษฎีอะตอม ซึ่งเป็นรากฐานของเคมีสมัยใหม่ แต่ทฤษฎีอะตอมก็ต้องล้มเลิกไป เนื่องจากอะตอมที่แสดงพฤติกรรมได้ทั้งอนุภาคและคลื่น
สาขาวิชาย่อยของวิชาเคมี
วิชาเคมีมักแบ่งออกเป็นสาขาย่อยหลัก ๆ ได้หลายสาขา นอกจากนี้ยังมีสาขาทางเคมีที่มีลักษณะที่ข้ามขอบเขตการแบ่งสาขา และบางสาขาก็เป็นสาขาที่เฉพาะทางมาก- เคมีวิเคราะห์
- เคมีวิเคราะห์ (Analytical Chemistry) คือการวิเคราะห์ตัวอย่างสาร เพื่อศึกษาส่วนประกอบทางเคมีและโครงสร้าง.
- ชีวเคมี
- ชีวเคมี (Biochemistry) คือการศึกษาสารเคมี ปฏิกิริยาเคมี และ ปฏิสัมพันธ์ทางเคมีที่เกิดขึ้นในสิ่งมีชีวิต
- เคมีอนินทรีย์
- เคมีอนินทรีย์ (Inorganic Chemistry) คือการศึกษาคุณสมบัติและปฏิกิริยาของสารประกอบอนินทรีย์ อย่างไรก็ตามการแบ่งแยกระหว่างสาขาทางอินทรีย์และสาขาอนินทรีย์นั้น ไม่ชัดเจน และยังมีการเหลื่อมของขอบเขตการศึกษาอยู่มาก เช่นในสาขา organometallic chemistry
- เคมีอินทรีย์
- เคมีอินทรีย์(Organic Chemistry) คือการศึกษาโครงสร้าง, สมบัติ, ส่วนประกอบ และปฏิกิริยาเคมี ของสารประกอบอินทรีย์
- เคมีฟิสิกส์
- เคมีเชิงฟิสิกส์(Physical Chemistry) คือการศึกษารากฐานทางกายภาพของระบบและกระบวนการทางเคมี ตัวอย่างที่เห็นก็เช่น นักเคมีเชิงฟิสิกส์มักสนใจการอธิบายการเปลี่ยนแปลงทางเคมีในเชิงของพลังงาน สาขาที่สำคัญในกลุ่มนี้รวมถึง
- เคมีอุณหพลศาสตร์ (chemical thermodynamics)
- เคมีไคเนติกส์ (chemical kinetics)
- เคมีควอนตัม (quantum chemistry)
- กลศาสตร์สถิติ (statistical mechanics)
- สเปกโตรสโคปี (spectroscopy)
- เคมีถวิล
- คือการศึกษากระบอกไม้ไผ่ที่เป็นแหล่งกำเนิดถวิล
- สาขาอื่นๆ
- เคมีบรรยากาศ (Atmospheric chemistry)
- เคมีดาราศาสตร์ (Astrochemistry)
- เคมีการคำนวณ (Computational chemistry)
- เคมีไฟฟ้า (Electrochemistry)
- เคมีสิ่งแวดล้อม (Environmental chemistry)
- ธรณีเคมี (Geochemistry) ,
- วัสดุศาสตร์ (Materials Science)
- เคมีเวชภัณฑ์ (Medicinal chemistry)
- ชีววิทยาโมเลกุล (Molecular Biology)
- พันธุศาสตร์โมเลกุล (Molecular genetics)
- เคมีนิวเคลียร์ (Nuclear chemistry)
- ปิโตรเคมี (Petrochemistry)
- เภสัชวิทยา (Pharmacology)
- เคมีพอลิเมอร์ (Polymer chemistry)
- โลหะอินทรีย์เคมี (Organometallic chemistry)
- ซูปราโมเลกุลาร์เคมี (Supramolecular chemistry)
- เคมีพื้นผิว (Surface chemistry)
- เคมีความร้อน (Thermochemistry)
มโนทัศน์พื้นฐาน
โมเลกุล
โมเลกุลเป็นหน่วยที่เล็กที่สุดของสารประกอบบริสุทธิ์ ประกอบด้วยอะตอมตั้งแต่ 2 อะตอมขึ้นสร้างพันธะต่อกันสารละลาย
สารละลายอาจเป็นธาตุ สารประกอบ หรือของผสมจากธาตุ หรือสารประกอบมากกว่า 1 ชนิด สสารส่วนใหญ่ที่พบเห็นในชีวิตประจำวันจะอยู่ในรูปของผสมชีววิทยา
ความหมาย
ชีววิทยา เป็นการศึกษาในทุกๆแง่มุม (Biological Sciences) ของสิ่งมีชีวิต โดยคำว่า ชีววิทยา (Biology) มาจากภาษากรีก จากคำว่า " Bios "& "Logos" ซึ่งคำว่า "bios" แปลว่า สิ่งมีชีวิต และ "logos"แปลว่า วิชา หรือการศึกษาอย่างมีเหตุผล
แขนงวิชาชีววิทยา
มีแขนงย่อย 4 กลุ่ม
- การศึกษาโครงสร้างพื้นฐานของสิ่งมีชีวิต เช่นเซลล์ ยีน
- การศึกษาการทำงานของโครงสร้างต่างๆ ตั้งแต่ระดับเนื้อเยื่อ ระดับอวัยวะ จนถึงระดับร่างกาย
- การศึกษาประวัติศาสตร์ของสิ่งมีชีวิต เช่น วิวัฒนาการ
- การศึกษาความสัมพันธ์ในระหว่างสิ่งมีชีวิต เช่น การพึงพาอาศัยกัน การเกือกุลของสิ่งมีชีวิต
ระบบการศึกษา
การศึกษาสิ่งมีชีวิตในระดับอะตอมและโมเลกุล จัดอยู่ในสาขาวิชาอณูชีววิทยา ชีวเคมี และอณูพันธุศาสตร์ การศึกษาในระดับเซลล์ จัดอยู่ในสาขาวิชาเซลล์วิทยา และในระดับเนื้อเยื่อ จัดอยู่ในสาขาวิชาสรีรวิทยา กายวิภาคศาสตร์ และมิญชวิทยา สาขาวิชาคัพภวิทยาเป็นการศึกษาการเจริญเติบโตและพัฒนาการของตัวอ่อนของสิ่งมีชีวิตประเภทสาขา
สาขาวิชาพันธุศาสตร์เป็นการศึกษาการถ่ายทอดลักษณะทางพันธุกรรมของสิ่งมีชีวิตจากรุ่นหนึ่งไปสู่อีกรุ่นหนึ่ง สาขาวิชาพฤติกรรมวิทยาเป็นการศึกษาพฤติกรรมของกลุ่มสิ่งมีชีวิต สาขาวิชาพันธุศาสตร์ประชากรเป็นการศึกษาพันธุศาสตร์ในระดับประชากรของสิ่งมีชีวิต การศึกษาความสัมพันธ์ระหว่างสิ่งมีชีวิตชนิดหนึ่งกับสิ่งมีชีวิตอีกชนิดหนึ่ง และระหว่างสิ่งมีชีวิตกับถิ่นที่อยู่อาศัย จัดอยู่ในสาขาวิชานิเวศวิทยาและชีววิทยาของวิวัฒนาการปรากฏการณ์ทางชีววิทยา
ปรากฏการณ์การเปลี่ยนแปลงจากทางธรรมชาติ เกิดจากการความแตกต่างของสภาพพื้นที่ และการใช้ชีวิตของการดำรงชีวิต เช่น นกนางแอ่น ในทะเล กับ นกนางแอ่น บนภาคพื้นที่อยู่ในวงศ์ตระกูลเดียวกันแต่ แตกต่างในการดำรงชีวิตและลักษณะของสภาพร่างกาย เป็นต้นหลักของวิชาชีววิทยา
- หลักทฤษฎีเซลล์ (Cell Theory). ซึ่งทฤษฎีนี้ระบุว่าสิ่งมีชีวิตทั้งหลายจะต้องประกอบไปเซลล์อย่างน้อยหนึ่งเซลล์ ซึ่งเซลล์ถือว่าเป็นองค์ประกอบพื้นฐานที่สุดของการทำงานในสิ่งมีชีวิต นอกจากนี้ กระบวนการทางกลศาสตร์และทางเคมีต่างก็ล้วนอาศัยเซลล์เป็นตัวขับเคลื่อนกระบวนการเช่นเดียวกัน ทั้งเชื่อว่าเซลล์สามารถเกิดจากเซลล์ต้นกำเนิด (perexisting cells) ได้เท่านั้น
- หลักวิวัฒนาการ (Evolution). เชื่อในการเลือกสรรของธรรมชาติ (natural selection) และการถ่ายทอดทางพันธุกรรม
- หลักทฤษฎีพันธุกรรม (Gene Theory). เชื่อว่าลักษณะทางพันธุกรรมนั้น ถูกเก็บเป็นรหัสสิ่งมีชีวิตใน DNA ในยีนอันเป็นมูลฐานแห่งการถ่ายทอดพันธุกรรม
- หลักภาวะธำรงดุล (Homeostasis). เป็นหลักที่เชื่อในการรักษาสมดุลของสิ่งมีชีวิต ในการปรับระบบภาวะแวดล้อมทั้งทางฟิสิกส์และเคมีของระบบภายในสิ่งมีชีวิตให้เข้ากับระบบภายนอกสิ่งมีชีวิต
สารพันธุกรรม
สารพันธุวิศกรรม หรือ สารพันธุกรรม ชื่ออื่นๆ DNA เป็นสสารประเภท นาโนไมโคร ที่มีการประกอบด้วย กรดนิวคลีอิก เช่น ดีเอ็นเอ ทำหน้าที่เป็นรหัสพันธุกรรมหลักของลักษณะร่วมกันอีกสิ่งหนึ่งคือ สิ่งมีชีวิตทุกชนิด นอกเหนือจากเซลล์ของไวรัส ประกอบขึ้นจากเซลล์ และยังมีกระบวนการเจริญเติบโตคล้ายคลึงกัน ตัวอย่างเช่น สิ่งมีชีวิตชั้นสูงส่วนใหญ่จะมีเอ็มบริโอที่มีลักษณะขั้นต้นคล้ายกัน และมียีนคล้ายกันอีกด้วย ต้องเป็นสิ่งมีชีวิตประเภทเดียวกันเท่านัน้จึงจะสามารถได้รับการผสมกันได้
วิวัฒนาการ
แนวคิดหลักของชีววิทยาคือ สิ่งมีชีวิตทุกชนิดมีต้นกำเนิดร่วมกัน และมีการเปลี่ยนแปลงพัฒนาโดยกระบวนการที่เรียกว่า วิวัฒนาการเช่นลิงมาเป็นมนุษย์ความหลากหลายของสิ่งมีชีวิต
จอห์น แมคเคน กล่าวว่า พ่อผมบุกชิงควายในสนามรบ และเขาก็ทำได้สำเร็จ เพราะเขารู้ว่าควายมีรูปร่างอย่างไรความสัมพันธ์ระหว่างสิ่งมีชีวิตกับสิ่งแวดล้อม
สิ่งมีชีวิตทุกชนิดจะมีความสัมพันธ์กับสิ่งมีชีวิตชนิดอื่นๆ และกับสิ่งแวดล้อม เหตุผลหนึ่งที่ทำให้การศึกษาระบบทางชีววิทยาทำได้ยากคือ ความสัมพันธ์ดังกล่าวมีมากมายหลายทางที่เป็นไปได้ แม้แต่ในการศึกษาระดับที่เล็กที่สุด เช่น แบคทีเรียจะมีปฏิกิริยากับน้ำตาลที่อยู่โดยรอบ ซึ่งเป็นการตอบสนองต่อสิ่งแวดล้อม เหมือนกับที่สิงโตมีการตอบสนองต่อสิ่งแวดล้อมขณะที่ออกหาอาหารในทุ่งหญ้าซาวันนา ส่วนพฤติกรรมที่มีต่อสิ่งมีชีวิตชนิดอื่นๆ อาจเป็นไปทั้งในลักษณะอาศัยอยู่ร่วมกัน คุกคามต่อกัน เป็นปรสิต หรือพึ่งพาอาศัยกัน ความสัมพันธ์นี้จะซับซ้อนมากขึ้นหากมีสิ่งมีชีวิต 2 ชนิด หรือมากกว่า มีความเกี่ยวข้องต่อกันในระบบนิเวศ การศึกษาความสัมพันธ์นี้จัดเป็นสาขาวิชานิเวศวิทยาขอบเขตของชีววิทยา
ชีววิทยาเป็นสาขาวิชาที่ใหญ่มากจนไม่อาจศึกษาเป็นสาขาเดียวได้ จึงต้องแยกออกเป็นสาขาย่อยต่างๆ ในหัวข้อนี้จะแบ่งสาขาย่อยออกเป็น 4 กลุ่ม กลุ่มที่หนึ่งเป็นสาขาที่ศึกษาโครงสร้างพื้นฐานของสิ่งมีชีวิต อย่างเช่นเซลล์ ยีน เป็นต้น กลุ่มที่สองศึกษาการทำงานของโครงสร้างต่างๆ ตั้งแต่ระดับเนื้อเยื่อ ระดับอวัยวะ จนถึงระดับร่างกาย กลุ่มที่สามศึกษาประวัติศาสตร์ของสิ่งมีชีวิต กลุ่มที่สี่ศึกษาความสัมพันธ์ในระหว่างสิ่งมีชีวิต อย่างไรก็ตาม การแบ่งกลุ่มนี้เป็นเพียงการจัดหมวดหมู่ให้สาขาต่างๆในชีววิทยาให้เป็นระเบียบและเข้าใจง่าย แต่ความจริงแล้ว ขอบเขตของสาขาต่างๆนั้นไม่แน่นอน และสาขาวิชาส่วนใหญ่ก็จำเป็นต้องใช้ความรู้จากสาขาอื่นด้วย ตัวอย่างเช่น สาขาชีววิทยาของวิวัฒนาการ ต้องใช้ความรู้จากสาขาอณูวิทยา เพื่อจัดลำดับของดีเอ็นเอ ซึ่งจะช่วยให้เข้าใจความแปรผันทางพันธุกรรมของประชากร หรือสาขาวิชาสรีรวิทยา ต้องใช้ความรู้จากสาขาชีววิทยาของเซลล์ เพื่ออธิบายการทำงานของระบบอวัยวะโครงสร้างของชีวิต
อณูชีววิทยาเป็นสาขาหนึ่งในชีววิทยา ซึ่งศึกษาในระดับโมเลกุล สาขานี้มีความสอดคล้องกับสาขาอื่นๆในชีววิทยา โดยเฉพาะสาขาพันธุศาสตร์และชีวเคมี อณูชีววิทยาเป็นการศึกษาปฏิสัมพันธ์ของระบบต่างๆในเซลล์ ซึ่งได้แก่ ความสัมพันธ์ระหว่าง ดีเอ็นเอ อาร์เอ็นเอ การสังเคราะห์โปรตีน และการควบคุมความสัมพันธ์เหล่านี้ชีววิทยาของเซลล์เป็นสาขาที่ศึกษาลักษณะทางสรีรวิทยาของเซลล์ รวมไปถึงพฤติกรรม ปฏิสัมพันธ์ และสิ่งแวดล้อมของเซลล์ ทั้งระดับจุลภาคและระดับโมเลกุล สาขาวิชานี้จะศึกษาวิจัยทั้งสิ่งมีชีวิตเซลล์เดียว อย่างเช่นแบคทีเรีย และเซลล์ที่ทำหน้าที่พิเศษในสิ่งมีชีวิตหลายเซลล์ อย่างเช่นมนุษย์
พันธุศาสตร์เป็นสาขาที่ศึกษายีน พันธุกรรม และการผันแปรของสิ่งมีชีวิต ในการศึกษาวิจัยสมัยใหม่ มีเครื่องมือที่สำคัญในการศึกษาหน้าที่ของยีน หรือความสัมพันธ์ทางพันธุกรรม ในสิ่งมีชีวิต ข้อมูลทางพันธุกรรมจะอยู่ในโครโมโซม ซึ่งข้อมูลจะแทนที่ด้วยโครงสร้างทางเคมีของโมเลกุลของดีเอ็นเอ
สรีรวิทยาของสิ่งมีชีวิต
สรีรวิทยาเป็นสาขาที่ศึกษาเกี่ยวกับกระบวนการทางกายภาพและทางชีวเคมีในสิ่งมีชีวิต เพื่อให้เข้าใจหน้าที่ของโครงสร้างต่างๆ ซึ่งเป็นหลักการสำคัญในการศึกษาทางชีววิทยา การศึกษาทางสรีรวิทยาสามารถแบ่งออกได้เป็นสรีรวิทยาของพืชและสรีรวิทยาของสัตว์ แต่หลักของสรีรวิทยาในสิ่งมีชีวิตทุกชนิดล้วนแต่เหมือนกัน ตัวอย่างเช่น การศึกษาสรีรวิทยาของเซลล์ยีสต์สามารถประยุกต์ใช้กับการศึกษาในเซลล์มนุษย์ได้ สรีรวิทยาของสัตว์เป็นการศึกษาทั้งในมนุษย์และสิ่งมีชีวิตชนิดอื่นๆ สรีรวิทยาของพืชก็มีวิธีการศึกษาเช่นเดียวกับในสัตว์กายวิภาคศาสตร์เป็นสาขาที่สำคัญในสรีรวิทยา ซึ่งศึกษาเกี่ยวกับหน้าที่และความสัมพันธ์ของระบบอวัยวะในสิ่งมีชีวิต เช่น ระบบประสาท ระบบภูมิคุ้มกัน ระบบต่อมไร้ท่อ ระบบหายใจ ระบบไหลเวียนโลหิต การศึกษาเกี่ยวกับระบบเหล่านี้สามารถแบ่งออกเป็นสาขาวิชาต่างๆได้อีก เช่น ประสาทวิทยา วิทยาภูมิคุ้มกัน
ความหลากหลายและวิวัฒนาการของสิ่งมีชีวิต
การศึกษาวิวัฒนาการมีความเกี่ยวข้องกับต้นกำเนิดและการสืบทอดลักษณะของสปีชี่ส์ รวมถึงการเปลี่ยนแปลงลักษณะที่ผ่านมา และต้องอาศัยนักวิทยาศาสตร์จากหลายสาขาที่เกี่ยวข้องกับอนุกรมวิธานของสิ่งมีชีวิต สาขาวิวิฒนาการมีรากฐานจากสาขาบรรพชีวินวิทยา ซึ่งอาศัยซากดึกดำบรรพ์ในการตอบคำถามเกี่ยวกับรูปแบบและจังหวะของวิวิฒนาการสาขาวิชาหลักใหญ่ที่เกี่ยวกับอนุกรมวิธานมี 2 สาขา คือ พฤกษศาสตร์ และสัตววิทยา พฤกษศาสตร์เป็นสาขาที่ศึกษาเกี่ยวพืช มีเนื้อหาครอบคลุมกว้างขวางตั้งแต่การเจริญเติบโต การสืบพันธุ์ เมแทบอลิซึม โรค และวิวัฒนาการของพืช ส่วนสัตววิทยาจะศึกษาเกี่ยวกับสัตว์ รวมทั้งลักษณะทางสรีรวิทยาของสัตว์ซึ่งอยู่ในสาขากายวิภาคศาสตร์และคัพภวิทยา กลไกทางพันธุศาสตร์และการเจริญของพืชและสัตว์จะศึกษาในสาขาอณูชีววิทยา อณูพันธุศาสตร์ และชีววิทยาของการเจริญ
ความสัมพันธ์ระหว่างสิ่งมีชีวิต
สาขานิเวศวิทยาจะศึกษาการกระจายและความหนาแน่นของสิ่งมีชีวิต รวมทั้งความสัมพันธ์ระหว่างสิ่งมีชีวิตกับสิ่งแวดล้อม สิ่งแวดล้อมของสิ่งมีชีวิตจะหมายถึงถิ่นที่อยู่อาศัย ซึ่งจะรวมไปถึงปัจจัยทางกายภาพอย่างสภาพภูมิอากาศและลักษณะทางภูมิศาสตร์ รวมทั้งสิ่งมีชีวิตอื่นๆที่อาศัยอยู่ในบริเวณเดียวกัน การศึกษาระบบทางนิเวศวิทยามีหลายระดับ ตั้งแต่ระดับสิ่งมีชีวิต ระดับประชากร ระดับระบบนิเวศ ไปจนถึงระดับโลกของสิ่งมีชีวิต จึงจะเห็นได้ว่า นิเวศวิทยาเป็นสาขาที่ครอบคลุมถึงสาขาอื่นๆอีกมากมายสาขาพฤติกรรมวิทยาจะศึกษาพฤติกรรมของสัตว์ (โดยเฉพาะสัตว์สังคมอย่างสัตว์จำพวกลิงและสัตว์กินเนื้อ) บางครั้งอาจจัดเป็นสาขาหนึ่งในสัตววิทยา นักพฤติกรรมวิทยาจะเน้นศึกษาที่วิวัฒนาการของพฤติกรรม และความเข้าใจในพฤติกรรม โดยตั้งอยู่บนทฤษฎีการคัดเลือกโดยธรรมชาติ
ประวัติศาสตร์ของชีววิทยา
การค้นพบที่สำคัญทางด้านชีววิทยาได้แก่สาขาวิชาที่เกี่ยวข้อง
- ชีวเคมี (Biochemistry) เป็นการศึกษา ความเป็นไปในระดับชีวโมเลกุลของสิ่งมีชีวิต ทั้งองค์ประกอบทางชีวเคมีของเซลล์หรืออณุภาคต่างๆ (รวมไวรัส) โครงสร้างและการเปลี่ยนแปลง ทั้งการสร้างและทำลายโมเลกุลเหล่านั้น (ทั้งสารโมเลกุลเล็ก และ โมเลกุลใหญ่ เป็น มหโมเลกุล (macromolecules) เช่น โปรตีน (Protein) (รวม เอ็นไซม์ / Enzyme) ดีเอ็นเอ (DNA) อาร์เอ็นเอ (RNA) การควบคุมการเปลี่ยนแปลงของโมเลกุล การควบคุมการทำงานในระดับต่างๆ การสร้างพลังงานและการใช้พลังงาน อันเป็นปรากฏการณ์ของชีวิต
- อณูชีววิทยา (Molecular biology) หรือ ชีววิทยาโมเลกุล เป็นสาขาย่อย ที่แตกออกมาจากชีวเคมี เน้นศึกษาโครงสร้างและการทำงานของยีน (gene) ซึ่งเป็นรหัสพันธุกรรมบนสายดีเอ็นเอ หรือ อาร์เอ็นเอ ตลอดจนการควบคุมการทำงานของยีน ในระดับต่างๆ จนออกมาเป็น สาย อาร์เอ็นเอ และ เป็น โปรตีน
- พันธุศาสตร์ (Genetics) ศึกษาลักษณะทางพันธุกรรม การถ่ายทอดลักษณะพันธุกรรมในสิ่งมีชีวิต จากชั่วชีวิตหนึ่งไปอีกชั่วชีวิตหนึ่ง
- เซลล์พันธุศาสตร์ (Cytogenetics) ศึกษาพันธุศาสตร์ในระดับเซลล์ รูปร่าง ลักษณะ และจำนวนของโครโมโซมในสิ่งมีชีวิต ตำแหน่งที่ตั้งของยีนบนโครโมโซม และการแบ่งเซลล์ในสิ่งมีชีวิต
- สัณฐานวิทยา (Morphology) ศึกษารูปพรรณสัณฐานของสิ่งมีชีวิต ไม่ว่าจุลชีพ สัตว์ หรือพืช เพื่อประกอบการระบุชนิด เช่น ลักษณะรูปร่างของดอกไม้ หรือ การจัดเรียงตัวของใบ
- อนุกรมวิธาน (Taxonomy) ศึกษาการจัดจำแนกสิ่งมีชีวิต ออกเป็นหมวดหมู่ ในทางวิวัฒนาการ (evolution) สมัยก่อนเน้นข้อมูลสัณฐานวิทยา ปัจจุบันใช้ข้อมูลระดับโมเลกุลมากขึ้น กลายเป็นวิชา Molecular Systematics
- คัพภวิทยา (Embryology) ศึกษาการเจริญเติบโตของตัวอ่อนในสิ่งมีชีวิต การพัฒนา และ การเกิดอวัยวะต่างๆ ในช่วงเวลาการพัฒนาตัวอ่อน สามารถแยกได้เป็นคัพภวิทยาของพืช หรือคัพภวิทยาของสัตว์
- จุลชีววิทยา (Microbiology) ศึกษาสิ่งมีชีวิตที่มีขนาดเล็ก ส่วนมากมองด้วยตาเปล่าไม่เห็น ได้แก่ แบคทีเรีย เชื้อรา และ ยีสต์ มักรวม ไวรัส ไว้ด้วย
- สัตววิทยา (Zoology) ศึกษาชีววิทยาของสัตว์ ตั้งแต่สัตว์ชั้นต่ำพวก ฟองน้ำ แมงกะพรุน พยาธิตัวแบน พยาธิตัวกลม กลุ่มหนอนปล้อง สัตว์ที่มีข้อปล้อง กลุ่มสัตว์พวกหอย ปลาดาว จนถึง สัตว์มีกระดูกสันหลัง และ สัตว์เลี้ยงลูกด้วยนม
- ปักษีวิทยา (Ornithology) ศึกษานก
- มีนวิทยา (Ichthyology) ศึกษาปลา ลักษณะรูปร่างภายนอกของปลา ระบบต่างๆ ภายในตัวปลา การจัดจำแนกปลาออกเป็นกลุ่มหรือประเภทต่างๆ และเรื่องอื่นๆ ที่เกี่ยวข้องกับปลา
- สังขวิทยา (Malacology) ศึกษาหอย โดยเฉพาะหอยน้ำจืดที่เป็นเจ้าบ้านส่งผ่านของพยาธิ
- ปรสิตวิทยา (Parasitology) ศึกษาปรสิต ซึ่งดำรงชีพโดยเป็นตัวเบียฬของสิ่งมีชีวิตชนิดอื่น เช่น พยาธิตัวกลม พยาธิตัวแบน
- กีฏวิทยา (Entomology) ศึกษาแมลง การจัดจำแนก สรีรวิทยา สัณฐานวิทยา และนิเวศวิทยาของแมลง
- พฤกษศาสตร์ (Botany) ศึกษาชีววิทยาของพืช การจัดจำแนกพืช การกระจายของพืชในส่วนต่างๆ ของโลก ตั้งแต่พวกพืชชั้นต่ำที่ไม่มีราก ลำต้น ใบที่แท้จริง ไปจนถึงพืชชั้นสูง อันได้แก่ พืชดอก
- กิณวิทยา (Mycology) ศึกษาชีววิทยาของเห็ด และ รา
- บรรพชีวินวิทยา (Paleontology) ศึกษาฟอสซิล (fossils)
- ชีวสารสนเทศศาสตร์ (Bioinformatics) หรือ ชีววิทยาเชิงคำนวณ (computational biology) เป็นบูรณาการของสหวิชา ศึกษาโดยใช้ความรู้จาก อณูชีววิทยา ชีวเคมี คณิตศาสตร์ประยุกต์, สถิติศาสตร์, สารสนเทศศาสตร์ และวิทยาการคอมพิวเตอร์ เพื่อจัดเก็บข้อมูลอย่างเป็นระบบ สืบค้น ประมวลผลข้อมูลทางชีววิทยา เพื่อตอบปัญหาทางชีววิทยา หรือทำแบบจำลองเพื่อทำนายความเป็นไปได้ทางชีววิทยา ทำให้เกิดศาสตร์ใหม่ต่อๆมา เช่น จีโนมิกส์ (Genomics) โปรตีโอมิส์ (Proteomics) เมตะโบโลมิกส์ (Metabolomics) ฯลฯ
- ชีววิทยาระบบ (Systems biology) เป็นศาสตร์ที่อาศัยความรู้ทางชีวสารสนเทศศาสตร์ คณิตศาสตร์ชั้นสูง วิทยาการคอมพิวเตอร์ และ ชีวเคมี เพื่อทำแบบจำลองของปราฏการณ์ภายในเซลล์ หรือในสิ่งมีชีวิต บนคอมพิวเตอร์ โดยอาศัยการคำนวณ จุดมุ่งหมายก็เพื่อทำนายปรากฏการณ์ของชีวิตในเรื่องต่างๆ อาทิ การตอบสนองของเซลล์ต่อยา หรือ ต่อสภาวะต่างๆ เป็นต้น ก่อนการทำการทดลองจริงในห้องปฏิบัติการ (wet lab)
- ประสาทวิทยาศาสตร์ เป็นการศึกษาเกี่ยวกับ โครงสร้าง หน้าที่ การเจริญเติบโต พันธุกรรมศาสตร์ ชีวเคมี สรีรวิทยา, เภสัชวิทยา และ พยาธิวิทยา ของระบบประสาท นอกจากนี้การศึกษาเกี่ยวกับ พฤติกรรม และ การเรียนรู้ ยังถือว่าเป็นสาขาของประสาทวิทยาอีกด้วย
ดาราศาสตร์
ดาราศาสตร์ คือวิชาวิทยาศาสตร์ที่ศึกษาวัตถุท้องฟ้า (อาทิ ดาวฤกษ์ ดาวเคราะห์ ดาวหาง และดาราจักร) รวมทั้งปรากฏการณ์ทางธรรมชาติต่างๆ ที่เกิดขึ้นจากนอกชั้นบรรยากาศของโลก โดยศึกษาเกี่ยวกับวิวัฒนาการ ลักษณะทางกายภาพ ทางเคมี ทางอุตุนิยมวิทยา และการเคลื่อนที่ของวัตถุท้องฟ้า ตลอดจนถึงการกำเนิดและวิวัฒนาการของเอกภพ[ดาราศาสตร์เป็นหนึ่งในสาขาของวิทยาศาสตร์ที่เก่าแก่ที่สุด นักดาราศาสตร์ในวัฒนธรรมโบราณสังเกตการณ์ดวงดาวบนท้องฟ้าในเวลากลางคืน และวัตถุทางดาราศาสตร์หลายอย่างก็ได้ถูกค้นพบเรื่อยมาตามยุคสมัย อย่างไรก็ตาม กล้องโทรทรรศน์เป็นสิ่งประดิษฐ์ที่จำเป็นก่อนที่จะมีการพัฒนามาเป็นวิทยาศาสตร์สมัยใหม่ ตั้งแต่อดีตกาล ดาราศาสตร์ประกอบไปด้วยสาขาที่หลากหลายเช่น การวัดตำแหน่งดาว การเดินเรือดาราศาสตร์ ดาราศาสตร์เชิงสังเกตการณ์ การสร้างปฏิทิน และรวมทั้งโหราศาสตร์ แต่ดาราศาสตร์ทุกวันนี้ถูกจัดว่ามีความหมายเหมือนกับฟิสิกส์ดาราศาสตร์ ตั้งแต่คริสต์ศตวรรษที่ 20 เป็นต้นมา ดาราศาสตร์ได้แบ่งออกเป็นสองสาขาได้แก่ ดาราศาสตร์เชิงสังเกตการณ์ และดาราศาสตร์เชิงทฤษฎี ดาราศาสตร์เชิงสังเกตการณ์จะให้ความสำคัญไปที่การเก็บและการวิเคราะห์ข้อมูล โดยการใช้ความรู้ทางกายภาพเบื้องต้นเป็นหลัก ส่วนดาราศาสตร์เชิงทฤษฎีให้ความสำคัญไปที่การพัฒนาคอมพิวเตอร์หรือแบบจำลองเชิงวิเคราะห์ เพื่ออธิบายวัตถุท้องฟ้าและปรากฏการณ์ต่างๆ ทั้งสองสาขานี้เป็นองค์ประกอบซึ่งกันและกัน กล่าวคือ ดาราศาสตร์เชิงทฤษฎีใช้อธิบายผลจากการสังเกตการณ์ และดาราศาสตร์เชิงสังเกตการณ์ใช้ในการรับรองผลจากทางทฤษฎี
การค้นพบสิ่งต่างๆ ในเรื่องของดาราศาสตร์ที่เผยแพร่โดยนักดาราศาสตร์สมัครเล่นนั้นมีความสำคัญมาก และดาราศาสตร์ก็เป็นหนึ่งในวิทยาศาสตร์จำนวนน้อยสาขาที่นักดาราศาสตร์สมัครเล่นยังคงมีบทบาท โดยเฉพาะการค้นพบหรือการสังเกตการณ์ปรากฏการณ์ที่เกิดขึ้นเพียงชั่วคราว
ไม่ควรสับสนระหว่างดาราศาสตร์โบราณกับโหราศาสตร์ ซึ่งเป็นความเชื่อที่นำเอาเหตุการณ์และพฤติกรรมของมนุษย์ไปเกี่ยวโยงกับตำแหน่งของวัตถุท้องฟ้า แม้ว่าทั้งดาราศาสตร์และโหราศาสตร์เกิดมาจากจุดร่วมเดียวกัน และมีส่วนหนึ่งของวิธีการศึกษาที่เหมือนกัน เช่นการบันทึกตำแหน่งดาว (ephemeris) แต่ทั้งสองอย่างก็แตกต่างกัน ]
ในปี ค.ศ. 2009 นี้เป็นการครบรอบ 400 ปีของการพิสูจน์แนวคิดเรื่องดวงอาทิตย์เป็นศูนย์กลางของจักรวาล ของ นิโคเลาส์ โคเปอร์นิคัส อันเป็นการพลิกคติและโค่นความเชื่อเก่าแก่เรื่องโลกเป็นศูนย์กลางของจักรวาลของอริสโตเติลที่มีมาเนิ่นนาน โดยการใช้กล้องโทรทรรศน์สังเกตการณ์ทางดาราศาสตร์ของกาลิเลโอซึ่งช่วยยืนยันแนวคิดของโคเปอร์นิคัส องค์การสหประชาชาติจึงได้ประกาศให้ปีนี้เป็นปีดาราศาสตร์สากล มีเป้าหมายเพื่อให้สาธารณชนได้มีส่วนร่วมและทำความเข้าใจกับดาราศาสตร์มากขึ้น
ประวัติ
ดาราศาสตร์นับเป็นวิชาที่เก่าแก่ที่สุดวิชาหนึ่ง เพราะนับแต่มีมนุษย์อยู่บนโลก เขาย่อมได้เห็นได้สัมผัสกับสิ่งแวดล้อมตามธรรมชาติเสมอมา แล้วก็เริ่มสังเกตจดจำและเล่าต่อๆ กัน เช่น เมื่อมองออกไปรอบตัวเห็นพื้นดินราบ ดูออกไปไกลๆ ก็ยังเห็นว่าพื้นผิวของโลกแบน จึงคิดกันว่าโลกแบน มองฟ้าเห็นโค้งคล้ายฝาชีหรือโดม มีดาวให้เห็นเคลื่อนข้ามศีรษะไปทุกคืน กลางวันมีลูกกลมแสงจ้า ให้แสง สี ความร้อน ซึ่งก็คือ ดวงอาทิตย์ ที่เคลื่อนขึ้นมาแล้วก็ลับขอบฟ้าไป ดวงอาทิตย์จึงมีความสำคัญกับเขามาก
การศึกษาดาราศาสตร์ในยุคแรกๆ เป็นการเฝ้าดูและคาดเดาการเคลื่อนที่ของวัตถุท้องฟ้าเหล่านั้นที่สามารถมองเห็นได้ด้วยตาเปล่า ก่อนยุคสมัยที่กล้องโทรทรรศน์จะถูกประดิษฐ์ขึ้น มีสิ่งปลูกสร้างโบราณหลายแห่งที่เชื่อว่าเป็นสถานที่สำหรับการเฝ้าศึกษาทางดาราศาสตร์ เช่น สโตนเฮนจ์ นอกจากนี้การเฝ้าศึกษาดวงดาวยังมีความสำคัญต่อพิธีกรรม ความเชื่อ และเป็นการบ่งบอกถึงการเปลี่ยนฤดูกาล ซึ่งเป็นปัจจัยสำคัญต่อสังคมเกษตรกรรมการเพาะปลูก รวมถึงเป็นเครื่องบ่งชี้ถึงระยะเวลา วัน เดือน ปี[5]
เมื่อสังคมมีวิวัฒนาการขึ้นในดินแดนต่างๆ เช่น เมโสโปเตเมีย กรีก อียิปต์ เปอร์เซีย มายา อินเดีย จีน และอาหรับ การสังเกตการณ์ทางดาราศาสตร์ก็ซับซ้อนมากขึ้น เริ่มมีแนวคิดเกี่ยวกับความสัมพันธ์ของธรรมชาติแห่งจักรวาลกว้างขวางขึ้น ผลการศึกษาดาราศาสตร์ในยุคแรกๆ จะเป็นการบันทึกแผนที่ตำแหน่งของดวงดาวต่างๆ อันเป็นศาสตร์ที่ปัจจุบันเรียกกันว่า การวัดตำแหน่งดาว (astrometry) ผลจากการเฝ้าสังเกตการณ์ทำให้แนวคิดเกี่ยวกับการเคลื่อนที่ของดวงดาวต่างๆ เริ่มก่อตัวเป็นรูปร่างขึ้น ธรรมชาติการเคลื่อนที่ของดวงอาทิตย์ ดวงจันทร์ และโลก นำไปสู่แนวคิดเชิงปรัชญาเพื่อพยายามอธิบายปรากฏการณ์เหล่านั้น ความเชื่อดั้งเดิมคือโลกเป็นศูนย์กลางของจักรวาล โดยมีดวงอาทิตย์ ดวงจันทร์ และดวงดาวต่างๆ เคลื่อนที่ไปโดยรอบ แนวคิดนี้เรียกว่า แบบจำลองแบบโลกเป็นศูนย์กลางจักรวาล (geocentric model)
มีการค้นพบทางดาราศาสตร์ที่สำคัญไม่มากนักก่อนการประดิษฐ์กล้องโทรทรรศน์ ตัวอย่างการค้นพบเช่น ชาวจีนสามารถประเมินความเอียงของแกนโลกได้ประมาณหนึ่งพันปีก่อนคริสตกาล ชาวบาบิโลนค้นพบว่าปรากฏการณ์จันทรคราสจะเกิดขึ้นซ้ำเป็นช่วงเวลา เรียกว่า วงรอบซารอส[6] และช่วงสองร้อยปีก่อนคริสตกาล ฮิปปาร์คัส นักดาราศาสตร์ชาวกรีก สามารถคำนวณขนาดและระยะห่างของดวงจันทร์ได้[7]
ตลอดช่วงยุคกลาง การค้นพบทางดาราศาสตร์ในยุโรปกลางมีน้อยมากจนกระทั่งถึงคริสต์ศตวรรษที่ 13 แต่มีการค้นพบใหม่ๆ มากมายในโลกอาหรับและภูมิภาคอื่นของโลก มีนักดาราศาสตร์ชาวอาหรับหลายคนที่มีชื่อเสียงและสร้างผลงานสำคัญแก่วิทยาการด้านนี้ เช่น Al-Battani และ Thebit รวมถึงคนอื่นๆ ที่ค้นพบและตั้งชื่อให้แก่ดวงดาวด้วยภาษาอารบิก ชื่อดวงดาวเหล่านี้ยังคงมีที่ใช้อยู่จนถึงปัจจุบัน[8]
เคปเลอร์ได้คิดค้นระบบแบบใหม่ขึ้นโดยปรับปรุงจากแบบจำลองเดิมของโคเปอร์นิคัส ทำให้รายละเอียดการโคจรต่างๆ ของดาวเคราะห์และดวงอาทิตย์ที่ศูนย์กลางสมบูรณ์ถูกต้องมากยิ่งขึ้น แต่เคปเลอร์ก็ไม่ประสบความสำเร็จในการนำเสนอทฤษฎีนี้เนื่องจากกฎหมายในยุคสมัยนั้น จนกระทั่งต่อมาถึงยุคสมัยของเซอร์ ไอแซค นิวตัน ผู้คิดค้นหลักกลศาสตร์ท้องฟ้าและกฎแรงโน้มถ่วงซึ่งสามารถอธิบายการเคลื่อนที่ของดาวเคราะห์ได้อย่างสมบูรณ์ นิวตันยังได้คิดค้นกล้องโทรทรรศน์แบบสะท้อนแสงขึ้นด้วย
การค้นพบใหม่ๆ เกิดขึ้นเรื่อยๆ พร้อมไปกับการพัฒนาขนาดและคุณภาพของกล้องโทรทรรศน์ที่ดียิ่งขึ้น มีการจัดทำรายชื่อดาวอย่างละเอียดเป็นครั้งแรกโดย ลาซายล์ ต่อมานักดาราศาสตร์ชื่อ วิลเลียม เฮอร์เชล ได้จัดทำรายการโดยละเอียดของเนบิวลาและกระจุกดาว ค.ศ. 1781 มีการค้นพบดาวยูเรนัส ซึ่งเป็นการค้นพบดาวเคราะห์ดวงใหม่เป็นครั้งแรก ค.ศ. 1838 มีการประกาศระยะทางระหว่างดาวเป็นครั้งแรกโดยฟรีดดริค เบสเซล หลังจากตรวจพบพารัลแลกซ์ของดาว 61 Cygni
ระหว่างคริสต์ศตวรรษที่ 19 ออยเลอร์ คลาเราต์ และดาเลมเบิร์ต ได้คิดค้นคณิตศาสตร์เกี่ยวกับปัญหาสามวัตถุ (three-body problem หรือ n-body problem) ทำให้การประมาณการเคลื่อนที่ของดวงจันทร์และดาวเคราะห์สามารถทำได้แม่นยำขึ้น งานชิ้นนี้ได้รับการปรับปรุงต่อมาโดย ลากรองจ์ และ ลาปลาส ทำให้สามารถประเมินมวลของดาวเคราะห์และดวงจันทร์ได้
การค้นพบสำคัญทางดาราศาสตร์ประสบความสำเร็จมากขึ้นเมื่อมีเทคโนโลยีใหม่ๆ เช่น การถ่ายภาพ และสเปกโตรสโคป เราทราบว่าดวงดาวต่างๆ ที่แท้เป็นดาวฤกษ์ที่มีลักษณะคล้ายคลึงกับดวงอาทิตย์ของเรานั่นเอง แต่มีอุณหภูมิ มวล และขนาดที่แตกต่างกันไป[10]
การค้นพบว่า ดาราจักรของเราหรือดาราจักรทางช้างเผือกนี้ เป็นกลุ่มของดาวฤกษ์ที่รวมตัวอยู่ด้วยกัน เพิ่งเกิดขึ้นในคริสต์ศตวรรษที่ 20 นี้เอง พร้อมกับการค้นพบการมีอยู่ของดาราจักรอื่นๆ ต่อมาจึงมีการค้นพบว่า เอกภพกำลังขยายตัว โดยดาราจักรต่างๆ กำลังเคลื่อนที่ห่างออกจากเรา การศึกษาดาราศาสตร์ยุคใหม่ยังค้นพบวัตถุท้องฟ้าใหม่ๆ อีกหลายชนิด เช่น เควซาร์ พัลซาร์ เบลซาร์ และดาราจักรวิทยุ ผลจากการค้นพบเหล่านี้นำไปสู่การพัฒนาทฤษฎีทางฟิสิกส์เพื่ออธิบายปรากฏการณ์ของวัตถุเหล่านี้เปรียบเทียบกับวัตถุประหลาดอื่นๆ เช่น หลุมดำ และดาวนิวตรอน ศาสตร์ทางด้านฟิสิกส์จักรวาลวิทยามีความก้าวหน้าอย่างมากตลอดคริสต์ศตวรรษที่ 20 แบบจำลองบิกแบงได้รับการสนับสนุนจากหลักฐานต่างๆ ที่ค้นพบโดยนักดาราศาสตร์และนักฟิสิกส์ เช่น การแผ่รังสีไมโครเวฟพื้นหลังของจักรวาล กฎของฮับเบิล และการที่มีธาตุต่างๆ มากมายอย่างไม่คาดคิดในจักรวาลภายนอก
วัตถุดาราศาสตร์ที่สามารถสังเกตได้ในช่วงคลื่นวิทยุมีมากมาย รวมไปถึงซูเปอร์โนวา แก๊สระหว่างดาว พัลซาร์ และนิวเคลียสดาราจักรกัมมันต์[13]
ในการศึกษาดาราศาสตร์นิวตริโน นักดาราศาสตร์จะใช้ห้องทดลองใต้ดินพิเศษเช่น SAGE, GALLEX, และ Kamioka II/III เพื่อทำการตรวจจับนิวตริโน ซึ่งเป็นอนุภาคที่เกิดจากดวงอาทิตย์ แต่ก็อาจพบจากซูเปอร์โนวาด้วย[ เราสามารถตรวจหารังสีคอสมิกซึ่งประกอบด้วยอนุภาคพลังงานสูงได้ขณะที่มันปะทะกับชั้นบรรยากาศของโลก เครื่องมือตรวจจับนิวตริโนในอนาคตอาจมีความสามารถพอจะตรวจจับนิวตริโนที่เกิดจากรังสีคอสมิกในลักษณะนี้ได้[12]
การเฝ้าสังเกตการณ์อีกแบบหนึ่งคือการสังเกตการณ์คลื่นความโน้มถ่วง ตัวอย่างหอสังเกตการณ์ลักษณะนี้ เช่น Laser Interferometer Gravitational Observatory (LIGO) แต่การตรวจหาคลื่นความโน้มถ่วงยังเป็นไปได้ยากอยู่[18]
นอกจากนี้ ยังมีการศึกษาดาราศาสตร์ดาวเคราะห์ ซึ่งทำได้โดยการสังเกตการณ์โดยตรงผ่านยานอวกาศ รวมถึงการเก็บข้อมูลระหว่างที่ยานเดินทางผ่านวัตถุท้องฟ้าต่างๆ โดยใช้เซ็นเซอร์ระยะไกล ใช้ยานสำรวจเล็กลงจอดบนวัตถุเป้าหมายเพื่อทำการศึกษาพื้นผิว หรือศึกษาจากตัวอย่างวัตถุที่เก็บมาจากปฏิบัติการอวกาศบางรายการที่สามารถนำชิ้นส่วนตัวอย่างกลับมาทำการวิจัยต่อได้
นักดาราศาสตร์ทฤษฎีล้วนกระตือรือร้นที่จะสร้างแบบจำลองทฤษฎีเพื่อระบุถึงสิ่งที่จะเกิดขึ้นต่อไปจากผลสังเกตการณ์ที่ได้รับ เพื่อช่วยให้ผู้สังเกตการณ์สามารถเลือกใช้หรือปฏิเสธแบบจำลองแต่ละชนิดได้ตามที่เหมาะสมกับข้อมูล นักดาราศาสตร์ทฤษฎียังพยายามสร้างหรือปรับปรุงแบบจำลองให้เข้ากับข้อมูลใหม่ๆ ในกรณีที่เกิดความไม่สอดคล้องกัน ก็มีแนวโน้มที่จะปรับปรุงแบบจำลองเล็กน้อยเพื่อให้เข้ากันกับข้อมูล ในบางกรณีถ้าพบข้อมูลที่ขัดแย้งกับแบบจำลองอย่างมากเมื่อเวลาผ่านไปนานๆ ก็อาจจะต้องล้มเลิกแบบจำลองนั้นไปก็ได้
หัวข้อต่างๆ ที่นักดาราศาสตร์ทฤษฎีสนใจศึกษาได้แก่ วิวัฒนาการและการเปลี่ยนแปลงของดาวฤกษ์ การก่อตัวของดาราจักร โครงสร้างขนาดใหญ่ของวัตถุในเอกภพ กำเนิดของรังสีคอสมิก ทฤษฎีสัมพัทธภาพทั่วไป และฟิสิกส์จักรวาลวิทยา รวมถึงฟิสิกส์อนุภาคในทางดาราศาสตร์ด้วย การศึกษาฟิสิกส์ดาราศาสตร์เป็นเสมือนเครื่องมือสำคัญที่ใช้ตรวจวัดคุณสมบัติของโครงสร้างขนาดใหญ่ในเอกภพ ที่ซึ่งแรงโน้มถ่วงมีบทบาทสำคัญต่อปรากฏการณ์ทางกายภาพต่างๆ และเป็นพื้นฐานของการศึกษาฟิสิกส์หลุมดำ และการศึกษาคลื่นแรงโน้มถ่วง ยังมีทฤษฎีกับแบบจำลองอื่นๆ อีกซึ่งเป็นที่ยอมรับและร่วมศึกษากันโดยทั่วไป ในจำนวนนี้รวมถึงแบบจำลองแลมบ์ดา-ซีดีเอ็ม ทฤษฎีบิกแบง การพองตัวของจักรวาล สสารมืด และ พลังงานมืด ซึ่งกำลังเป็นหัวข้อสำคัญในการศึกษาดาราศาสตร์ในปัจจุบัน
ตัวอย่างหัวข้อการศึกษาดาราศาสตร์เชิงทฤษฎี มีดังนี้
พื้นผิวรอบนอกของดวงอาทิตย์ที่เรามองเห็นเรียกว่า โฟโตสเฟียร์ เหนือพื้นผิวนี้เป็นชั้นบางๆ เรียกชื่อว่า โครโมสเฟียร์ จากนั้นเป็นชั้นเปลี่ยนผ่านซึ่งมีอุณหภูมิเพิ่มสูงขึ้นอย่างมาก ชั้นนอกสุดมีอุณหภูมิสูงที่สุด เรียกว่า โคโรนา
ใจกลางของดวงอาทิตย์เรียกว่าย่านแกนกลาง เป็นเขตที่มีอุณหภูมิและความดันมากพอจะทำให้เกิดปฏิกิริยานิวเคลียร์ฟิวชั่น เหนือจากย่านแกนกลางเรียกว่าย่านแผ่รังสี (radiation zone) เป็นที่ซึ่งพลาสมาแผ่คลื่นพลังงานออกมาในรูปของรังสี ชั้นนอกออกมาเป็นย่านพาความร้อน (convection zone) ซึ่งสสารแก๊สจะเปลี่ยนพลังงานกลายไปเป็นแก๊ส เชื่อว่าย่านพาความร้อนนี้เป็นกำเนิดของสนามแม่เหล็กที่ทำให้เกิดจุดดับบนดวงอาทิตย์[21]
ลมสุริยะเกิดจากอนุภาคของพลาสมาที่ไหลออกจากดวงอาทิตย์ ซึ่งจะแผ่ออกไปจนกระทั่งถึงแนว heliopausเมื่อลมสุริยะทำปฏิกิริยากับสนามแม่เหล็กของโลก ทำให้เกิดแนวการแผ่รังสีแวนอัลเลนและออโรร่า ในตำแหน่งที่เส้นแรงสนามแม่เหล็กโลกไหลเวียนในชั้นบรรยากาศ[24]
ดาวเคราะห์ก่อตัวขึ้นจากแผ่นจานฝุ่นที่หมุนวนรอบๆ ดวงอาทิตย์ เมื่อผ่านกระบวนการต่างๆ นานาเช่น การดึงดูดของแรงโน้มถ่วง การปะทะ การแตกสลาย และการรวมตัวกัน แผ่นจานฝุ่นเหล่านั้นก็ก่อตัวเป็นรูปร่างที่เรียกว่า ดาวเคราะห์ก่อนเกิด (protoplanet) แรงดันการแผ่รังสีของลมสุริยะจะพัดพาเอาสสารที่ไม่สามารถรวมตัวกันติดให้กระจายหายไป คงเหลือแต่ส่วนของดาวเคราะห์ที่มีมวลมากพอจะดึงดูดบรรยากาศชั้นแก๊สของตัวเอาไว้ได้ ดาวเคราะห์ใหม่เหล่านี้ยังมีการดึงดูดและปลดปล่อยสสารในตัวตลอดช่วงเวลาที่ถูกเศษสะเก็ดดาวย่อยๆ ปะทะตลอดเวลา การปะทะเหล่านี้ทำให้เกิดหลุมบ่อบนพื้นผิวดาวเคราะห์ดั่งเช่นที่ปรากฏบนพื้นผิวดวงจันทร์ ผลจากการปะทะนี้ส่วนหนึ่งอาจทำให้ดาวเคราะห์ก่อนเกิดแตกชิ้นส่วนออกมาและกลายไปเป็นดวงจันทร์ของมันก็ได้]
เมื่อดาวเคราะห์เหล่านี้มีมวลมากพอ โดยรวมเอาสสารที่มีความหนาแน่นแบบต่างๆ เข้าไว้ด้วยกัน กระบวนการนี้ทำให้ดาวเคราะห์ก่อตัวเป็นดาวแบบต่างๆ คือแกนกลางเป็นหิน หรือโลหะ ล้อมรอบด้วยชั้นเปลือก และพื้นผิวภายนอก แกนกลางของดาวเคราะห์อาจเป็นของแข็งหรือของเหลวก็ได้ แกนกลางของดาวเคราะห์บางดวงสามารถสร้างสนามแม่เหล็กของตัวเองขึ้นมาได้ ซึ่งช่วยปกป้องชั้นบรรยากาศของดาวเคราะห์ดวงนั้นๆ จากผลกระทบของลมสุริยะ[28]
ความร้อนภายในของดาวเคราะห์หรือดวงจันทร์เป็นผลจากการปะทะกันที่ทำให้เกิดโครงร่างและสารกัมมันตรังสี (เช่น ยูเรเนียม ธอเรียม และ 26Alดาวเคราะห์และดวงจันทร์บางดวงสะสมความร้อนไว้มากพอจะทำให้เกิดกระบวนการทางธรณีวิทยาเช่น ภูเขาไฟและแผ่นดินไหว ส่วนพวกที่สามารถสะสมชั้นบรรยากาศของตัวเองได้ ก็จะมีกระบวนการกัดกร่อนของลมและน้ำ ดาวเคราะห์ที่เล็กกว่าจะเย็นตัวลงเร็วกว่า และปรากฏการณ์ทางธรณีวิทยาจะหยุดลงเว้นแต่หลุมบ่อจากการถูกชนเท่านั้น[29]
คุณลักษณะต่างๆ ของดาวฤกษ์ขึ้นอยู่กับมวลเริ่มต้นของดาวฤกษ์นั้นๆ ดาวฤกษ์ที่มีมวลมากจะมีความส่องสว่างสูง และจะใช้เชื้อเพลิงไฮโดรเจนจากแกนกลางของมันเองไปอย่างรวดเร็ว เมื่อเวลาผ่านไป เชื้อเพลิงไฮโดรเจนเหล่านี้จะค่อยๆ แปรเปลี่ยนกลายไปเป็นฮีเลียม ดาวฤกษ์ก็จะวิวัฒนาการไป การเกิดฟิวชั่นของฮีเลียมจะต้องใช้อุณหภูมิแกนกลางที่สูงกว่า ดังนั้นดาวฤกษ์นั้นก็จะขยายตัวใหญ่ขึ้น ขณะเดียวกันก็เพิ่มความหนาแน่นแกนกลางของตัวเองด้วย ดาวแดงยักษ์จะมีช่วงอายุที่สั้นก่อนที่เชื้อเพลิงฮีเลียมจะถูกเผาผลาญหมดไป ดาวฤกษ์ที่มีมวลมากกว่าจะผ่านกระบวนการวิวัฒนาการได้มากกว่า โดยที่มีธาตุหนักหลอมรวมอยู่ในตัวเพิ่มมากขึ้น
การสิ้นสุดชะตากรรมของดาวฤกษ์ก็ขึ้นอยู่กับมวลของมันเช่นกัน ดาวฤกษ์ที่มีมวลมากกว่าดวงอาทิตย์ของเรามากกว่า 8 เท่าจะแตกสลายกลายไปเป็นซูเปอร์โนวา ขณะที่ดาวฤกษ์ที่เล็กกว่าจะกลายไปเป็นเนบิวลาดาวเคราะห์ และวิวัฒนาการต่อไปเป็นดาวแคระขาว ซากของซูเปอร์โนวาคือดาวนิวตรอนที่หนาแน่น หรือในกรณีที่ดาวฤกษ์นั้นมีมวลมากกว่าดวงอาทิตย์ของเรากว่า 3 เท่า มันจะกลายไปเป็นหลุมดำ[3] สำหรับดาวฤกษ์ที่เป็นระบบดาวคู่อาจมีวิวัฒนาการที่แตกต่างออกไป เช่นอาจมีการถ่ายเทมวลแก่กันแล้วกลายเป็นดาวแคระขาวแบบคู่ซึ่งสามารถจะกลายไปเป็นซูเปอร์โนวาได้ การเกิดเนบิวลาดาวเคราะห์และซูเปอร์โนวาเป็นการกระจายสสารธาตุออกไปสู่สสารระหว่างดาว หากไม่มีกระบวนการนี้แล้ว ดาวฤกษ์ใหม่ๆ (และระบบดาวเคราะห์ของมัน) ก็จะก่อตัวขึ้นมาจากเพียงไฮโดรเจนกับฮีเลียมเท่านั้น
ที่ว่างระหว่างดวงดาวมีสสารระหว่างดาวบรรจุอยู่ เป็นย่านที่มีวัตถุต่างๆ อยู่อย่างเบาบางมาก บริเวณที่หนาแน่นที่สุดคือเมฆโมเลกุล ซึ่งประกอบด้วยโมเลกุลของไฮโดรเจนและธาตุอื่นๆ ที่เป็นย่านกำเนิดของดาวฤกษ์ ในช่วงแรกจะมีการก่อตัวเป็นเนบิวลามืดรูปร่างประหลาดก่อน จากนั้นเมื่อมีความหนาแน่นเพิ่มขึ้นมากๆ ก็จะเกิดการแตกสลายแล้วก่อตัวใหม่เป็นดาวฤกษ์ก่อนเกิด[34]
เมื่อมีดาวฤกษ์มวลมากปรากฏขึ้นมากเข้า มันจะเปลี่ยนเมฆโมเลกุลให้กลายเป็นบริเวณเอชทูซึ่งเป็นย่านเรืองแสงเต็มไปด้วยแก๊สและพลาสมา ลมดาวฤกษ์กับการระเบิดซูเปอร์โนวาของดาวเหล่านี้จะทำให้กลุ่มเมฆกระจายตัวกันออกไป แล้วเหลือแต่เพียงกลุ่มของดาวฤกษ์จำนวนหนึ่งที่เกาะกลุ่มกันเป็นกระจุกดาวเปิดอายุน้อยๆ เมื่อเวลาผ่านไปกระจุกดาวเหล่านี้ก็จะค่อยๆ กระจายห่างกันออกไป แล้วกลายไปเป็นประชากรดาวดวงหนึ่งในทางช้างเผือก
การศึกษาจลนศาสตร์ของมวลสารในทางช้างเผือกและดาราจักรต่างๆ ทำให้เราทราบว่า มวลที่มีอยู่ในดาราจักรนั้นแท้จริงมีมากกว่าสิ่งที่เรามองเห็น ทฤษฎีเกี่ยวกับสสารมืดจึงเกิดขึ้นเพื่ออธิบายปรากฏการณ์นี้ แม้ว่าธรรมชาติของสสารมืดยังคงเป็นสิ่งลึกลับไม่มีใครอธิบายได้[35]
ลักษณะของดาราจักรคล้ายคลึงกับชื่อประเภทที่กำหนด ดาราจักรชนิดรีจะมีรูปร่างในภาคตัดขวางคล้ายคลึงกับรูปวงรี ดาวฤกษ์จะโคจรไปแบบสุ่มโดยไม่มีทิศทางที่แน่ชัด ดาราจักรประเภทนี้มักไม่ค่อยมีฝุ่นระหว่างดวงดาวหลงเหลือแล้ว ย่านกำเนิดดาวใหม่ก็ไม่มี และดาวฤกษ์ส่วนใหญ่จะมีอายุมาก เรามักพบดาราจักรชนิดรีที่บริเวณใจกลางของกระจุกดาราจักร หรืออาจเกิดขึ้นจากการที่ดาราจักรขนาดใหญ่สองแห่งปะทะแล้วรวมตัวเข้าด้วยกันก็ได้
ดาราจักรชนิดก้นหอยมักมีรูปทรงค่อนข้างแบน เหมือนแผ่นจานหมุน และส่วนใหญ่จะมีดุมหรือมีแกนรูปร่างคล้ายคานที่บริเวณใจกลาง พร้อมกับแขนก้นหอยสว่างแผ่ออกไปเป็นวง แขนก้นหอยนี้เป็นย่านของฝุ่นที่เป็นต้นกำเนิดของดาวฤกษ์ ดาวฤกษ์อายุน้อยมวลมากจะทำให้แขนนี้ส่องสว่างเป็นสีฟ้า ส่วนที่รอบนอกของดาราจักรมักเป็นกลุ่มของดาวฤกษ์อายุมาก ดาราจักรทางช้างเผือกของเราและดาราจักรแอนดรอเมดาก็เป็นดาราจักรชนิดก้นหอย
ดาราจักรไร้รูปแบบมักมีรูปร่างปรากฏไม่แน่ไม่นอน ไม่ใช่ทั้งดาราจักรชนิดรีหรือชนิดก้นหอย ประมาณหนึ่งในสี่ของจำนวนดาราจักรทั้งหมดที่พบเป็นดาราจักรชนิดไร้รูปแบบนี้ รูปร่างอันแปลกประหลาดของดาราจักรมักทำให้เกิดปฏิกิริยาแรงโน้มถ่วงแปลกๆ ขึ้นด้วย
ดาราจักรกัมมันต์คือดาราจักรที่มีการเปล่งสัญญาณพลังงานจำนวนมากออกมาจากแหล่งกำเนิดอื่นนอกเหนือจากดาวฤกษ์ ฝุ่น และแก๊ส แหล่งพลังงานนี้เป็นย่านเล็กๆ แต่หนาแน่นมากซึ่งอยู่ในแกนกลางดาราจักร โดยทั่วไปเชื่อกันว่ามีหลุมดำมวลยวดยิ่งอยู่ที่นั่นซึ่งเปล่งพลังงานรังสีออกมาเมื่อมีวัตถุใดๆ ตกลงไปในนั้น ดาราจักรวิทยุคือดาราจักรกัมมันต์ชนิดหนึ่งที่ส่องสว่างมากในช่วงสเปกตรัมของคลื่นวิทยุ มันจะเปล่งลอนของแก๊สออกมาเป็นจำนวนมาก ดาราจักรกัมมันต์ที่แผ่รังสีพลังงานสูงออกมาได้แก่ ดาราจักรเซย์เฟิร์ต เควซาร์ และเบลซาร์ เชื่อว่าเควซาร์เป็นวัตถุที่ส่องแสงสว่างมากที่สุดเท่าที่เป็นที่รู้จักในเอกภพ[37]
โครงสร้างขนาดใหญ่ของจักรวาลประกอบด้วยกลุ่มและกระจุกดาราจักรจำนวนมาก โครงสร้างนี้มีการจัดลำดับชั้นโดยที่ระดับชั้นที่ใหญ่ที่สุดคือ มหากระจุกของดาราจักร เหนือกว่านั้นมวลสารจะมีการโยงใยกันในลักษณะของใยเอกภพและกำแพงเอกภพ ส่วนที่ว่างระหว่างนั้นมีแต่สูญญากาศ[38]
ตลอดช่วงเวลาการขยายตัวของเอกภพนี้ เอกภพได้ผ่านขั้นตอนของวิวัฒนาการมามากมายหลายครั้ง ในช่วงแรก ทฤษฎีคาดการณ์ว่าเอกภพน่าจะผ่านช่วงเวลาการพองตัวของจักรวาลที่รวดเร็วมหาศาล ซึ่งเป็นหนึ่งเดียวกันและเสมอกันในทุกทิศทางในสภาวะเริ่มต้น หลังจากนั้น นิวคลีโอซินทีสิสจึงทำให้เกิดธาตุต่างๆ ขึ้นมากมายในเอกภพยุคแรก
เมื่อมีอะตอมแรกเกิดขึ้น จึงมีการแผ่รังสีผ่านอวกาศ ปลดปล่อยพลังงานออกมาดั่งที่ทุกวันนี้เรามองเห็นเป็นรังสีไมโครเวฟพื้นหลังของจักรวาล เอกภพขยายตัวผ่านช่วงเวลาของยุคมืดเพราะไม่ค่อยมีแหล่งกำเนิดพลังงานของดาวฤกษ์[39]
เริ่มมีการจัดโครงสร้างลำดับชั้นของสสารขึ้นนับแต่เริ่มมีการเปลี่ยนแปลงความหนาแน่นของสสาร สสารที่รวมกลุ่มกันอยู่เป็นบริเวณหนาแน่นที่สุดกลายไปเป็นกลุ่มเมฆแก๊สและดาวฤกษ์ยุคแรกสุด ดาวฤกษ์มวลมากเหล่านี้เป็นจุดกำเนิดของกระบวนการแตกตัวทางไฟฟ้าซึ่งเชื่อว่าเป็นต้นกำเนิดของธาตุหนักมากมายที่อยู่ในเอกภพยุคเริ่มต้น
ผลจากแรงโน้มถ่วงทำให้มีการดึงดูดรวมกลุ่มกันเกิดเป็นใยเอกภพ มีช่องสูญญากาศเป็นพื้นที่ว่าง หลังจากนั้นโครงสร้างของแก๊สและฝุ่นก็ค่อยๆ รวมตัวกันเกิดเป็นดาราจักรยุคแรกเริ่ม เมื่อเวลาผ่านไป มันดึงดูดสสารต่างๆ เข้ามารวมกันมากขึ้น และมีการจัดกลุ่มโครงสร้างเข้าด้วยกันเป็นกลุ่มและกระจุกดาราจักร ซึ่งเป็นส่วนหนึ่งในโครงสร้างขนาดใหญ่คือมหากระจุกดาราจักร[40]
โครงสร้างพื้นฐานที่สุดของจักรวาลคือการมีอยู่ของสสารมืดและพลังงานมืด ในปัจจุบันเราเชื่อกันว่าทั้งสองสิ่งนี้มีอยู่จริง และเป็นส่วนประกอบถึงกว่า 96% ของความหนาแน่นทั้งหมดของเอกภพ เหตุนี้การศึกษาฟิสิกส์ในยุคใหม่จึงเป็นความพยายามทำความเข้าใจกับองค์ประกอบเหล่านี้[41]
นับแต่อดีตมา นักดาราศาสตร์สมัครเล่นได้สังเกตพบวัตถุท้องฟ้าและปรากฏการณ์ทางดาราศาสตร์ที่สำคัญมากมายด้วยเครื่องมือที่พวกเขาสร้างขึ้นมาเอง เป้าหมายในการสังเกตการณ์ของนักดาราศาสตร์สมัครเล่นโดยมากได้แก่ ดวงจันทร์ ดาวเคราะห์ ดาวฤกษ์ ดาวหาง ฝนดาวตก และวัตถุในห้วงอวกาศลึกอีกจำนวนหนึ่งเช่น กระจุกดาว กระจุกดาราจักร หรือเนบิวลา สาขาวิชาย่อยสาขาหนึ่งของดาราศาสตร์สมัครเล่น คือการถ่ายภาพทางดาราศาสตร์ ซึ่งเกี่ยวข้องกับวิธีการถ่ายภาพในท้องฟ้ายามราตรี นักดาราศาสตร์สมัครเล่นส่วนมากจะเจาะจงเฝ้าสังเกตวัตถุท้องฟ้าหรือปรากฏการณ์บางอย่างที่พวกเขาสนใจเป็นพิเศษ[43]44
ส่วนใหญ่แล้วนักดาราศาสตร์สมัครเล่นจะสังเกตการณ์ดาราศาสตร์ในคลื่นที่ตามองเห็น แต่ก็มีการทดลองเล็กๆ อยู่บ้างที่กระทำในช่วงคลื่นอื่นนอกจากคลื่นที่ตามองเห็น เช่นการใช้ฟิลเตอร์แบบอินฟราเรดติดบนกล้องโทรทรรศน์ หรือการใช้กล้องโทรทรรศน์วิทยุ เป็นต้น นักดาราศาสตร์สมัครเล่นผู้บุกเบิกในการสังเกตการณ์ดาราศาสตร์วิทยุ คือ คาร์ล แจนสกี (Karl Jansky) ผู้เริ่มเฝ้าสังเกตท้องฟ้าในช่วงคลื่นวิทยุตั้งแต่คริสต์ทศวรรษ 1930 ยังมีนักดาราศาสตร์สมัครเล่นอีกจำนวนหนึ่งที่ใช้กล้องโทรทรรศน์ประดิษฐ์เองที่บ้าน หรือใช้กล้องโทรทรรศน์วิทยุที่แต่เดิมสร้างมาเพื่องานวิจัยทางดาราศาสตร์ แต่ปัจจุบันได้เปิดให้บุคคลทั่วไปเข้าไปใช้งานได้ด้วย[45]
มีบทความทางดาราศาสตร์มากมายที่ส่งมาจากนักดาราศาสตร์สมัครเล่น อันที่จริงแล้ว นี่เป็นหนึ่งในไม่กี่สาขาวิชาทางวิทยาศาสตร์ที่มือสมัครเล่นก็สามารถมีส่วนร่วมหรือเขียนบทความสำคัญๆ ขึ้นมาได้ นักดาราศาสตร์สมัครเล่นสามารถตรวจวัดวงโคจรโดยละเอียดของดาวเคราะห์ขนาดเล็กได้ พวกเขาค้นพบดาวหาง และทำการเฝ้าสังเกตดาวแปรแสง ความก้าวหน้าของเทคโนโลยีดิจิตอลทำให้นักดาราศาสตร์สมัครเล่นมีความสามารถในการถ่ายภาพทางดาราศาสตร์ได้ดียิ่งขึ้น และหลายๆ ภาพก็เป็นภาพปรากฏการณ์อันสำคัญทางดาราศาสตร์ด้วย[47]]
50]
สัญลักษณ์ของโลกประกอบด้วยกากบาทที่ล้อมด้วยวงกลม โดยเส้นตั้งและเส้นนอนของกากบาทจะแทนเส้นเมอริเดียนและเส้นศูนย์สูตรตามลำดับ สัญลักษณ์อีกแบบของโลกจะวางกากบาทไว้เหนือวงกลมแทน (ยูนิโคด: ⊕ หรือ ♁)
วงโคจรของดวงจันทร์ อยู่ห่างจากโลก 250,000 ไมล์ ดวงจันทร์จะหันพื้นผิวด้านเดียวเข้าหาโลกอยู่เสมอ และโคจรรอบโลกใช้เวลาประมาณหนึ่งเดือน
โลกเป็นส่วนหนึ่งของระบบสุริยะ และมีวงโคจรรอบดวงอาทิตย์ร่วมกับวัตถุขนาดเล็กกว่าพันชิ้น และดาวเคราะห์อีก 8 ดวง ดวงอาทิตย์และระบบสุริยะเคลื่อนที่ผ่านส่วนแขนออริออน ดาราจักรทางช้างเผือก และจะเคลื่อนที่ครบรอบในอีก 10,000 ปีข้างหน้า[3]
การค้นพบสิ่งต่างๆ ในเรื่องของดาราศาสตร์ที่เผยแพร่โดยนักดาราศาสตร์สมัครเล่นนั้นมีความสำคัญมาก และดาราศาสตร์ก็เป็นหนึ่งในวิทยาศาสตร์จำนวนน้อยสาขาที่นักดาราศาสตร์สมัครเล่นยังคงมีบทบาท โดยเฉพาะการค้นพบหรือการสังเกตการณ์ปรากฏการณ์ที่เกิดขึ้นเพียงชั่วคราว
ไม่ควรสับสนระหว่างดาราศาสตร์โบราณกับโหราศาสตร์ ซึ่งเป็นความเชื่อที่นำเอาเหตุการณ์และพฤติกรรมของมนุษย์ไปเกี่ยวโยงกับตำแหน่งของวัตถุท้องฟ้า แม้ว่าทั้งดาราศาสตร์และโหราศาสตร์เกิดมาจากจุดร่วมเดียวกัน และมีส่วนหนึ่งของวิธีการศึกษาที่เหมือนกัน เช่นการบันทึกตำแหน่งดาว (ephemeris) แต่ทั้งสองอย่างก็แตกต่างกัน ]
ในปี ค.ศ. 2009 นี้เป็นการครบรอบ 400 ปีของการพิสูจน์แนวคิดเรื่องดวงอาทิตย์เป็นศูนย์กลางของจักรวาล ของ นิโคเลาส์ โคเปอร์นิคัส อันเป็นการพลิกคติและโค่นความเชื่อเก่าแก่เรื่องโลกเป็นศูนย์กลางของจักรวาลของอริสโตเติลที่มีมาเนิ่นนาน โดยการใช้กล้องโทรทรรศน์สังเกตการณ์ทางดาราศาสตร์ของกาลิเลโอซึ่งช่วยยืนยันแนวคิดของโคเปอร์นิคัส องค์การสหประชาชาติจึงได้ประกาศให้ปีนี้เป็นปีดาราศาสตร์สากล มีเป้าหมายเพื่อให้สาธารณชนได้มีส่วนร่วมและทำความเข้าใจกับดาราศาสตร์มากขึ้น
ประวัติ
ดาราศาสตร์นับเป็นวิชาที่เก่าแก่ที่สุดวิชาหนึ่ง เพราะนับแต่มีมนุษย์อยู่บนโลก เขาย่อมได้เห็นได้สัมผัสกับสิ่งแวดล้อมตามธรรมชาติเสมอมา แล้วก็เริ่มสังเกตจดจำและเล่าต่อๆ กัน เช่น เมื่อมองออกไปรอบตัวเห็นพื้นดินราบ ดูออกไปไกลๆ ก็ยังเห็นว่าพื้นผิวของโลกแบน จึงคิดกันว่าโลกแบน มองฟ้าเห็นโค้งคล้ายฝาชีหรือโดม มีดาวให้เห็นเคลื่อนข้ามศีรษะไปทุกคืน กลางวันมีลูกกลมแสงจ้า ให้แสง สี ความร้อน ซึ่งก็คือ ดวงอาทิตย์ ที่เคลื่อนขึ้นมาแล้วก็ลับขอบฟ้าไป ดวงอาทิตย์จึงมีความสำคัญกับเขามาก
การศึกษาดาราศาสตร์ในยุคแรกๆ เป็นการเฝ้าดูและคาดเดาการเคลื่อนที่ของวัตถุท้องฟ้าเหล่านั้นที่สามารถมองเห็นได้ด้วยตาเปล่า ก่อนยุคสมัยที่กล้องโทรทรรศน์จะถูกประดิษฐ์ขึ้น มีสิ่งปลูกสร้างโบราณหลายแห่งที่เชื่อว่าเป็นสถานที่สำหรับการเฝ้าศึกษาทางดาราศาสตร์ เช่น สโตนเฮนจ์ นอกจากนี้การเฝ้าศึกษาดวงดาวยังมีความสำคัญต่อพิธีกรรม ความเชื่อ และเป็นการบ่งบอกถึงการเปลี่ยนฤดูกาล ซึ่งเป็นปัจจัยสำคัญต่อสังคมเกษตรกรรมการเพาะปลูก รวมถึงเป็นเครื่องบ่งชี้ถึงระยะเวลา วัน เดือน ปี[5]
เมื่อสังคมมีวิวัฒนาการขึ้นในดินแดนต่างๆ เช่น เมโสโปเตเมีย กรีก อียิปต์ เปอร์เซีย มายา อินเดีย จีน และอาหรับ การสังเกตการณ์ทางดาราศาสตร์ก็ซับซ้อนมากขึ้น เริ่มมีแนวคิดเกี่ยวกับความสัมพันธ์ของธรรมชาติแห่งจักรวาลกว้างขวางขึ้น ผลการศึกษาดาราศาสตร์ในยุคแรกๆ จะเป็นการบันทึกแผนที่ตำแหน่งของดวงดาวต่างๆ อันเป็นศาสตร์ที่ปัจจุบันเรียกกันว่า การวัดตำแหน่งดาว (astrometry) ผลจากการเฝ้าสังเกตการณ์ทำให้แนวคิดเกี่ยวกับการเคลื่อนที่ของดวงดาวต่างๆ เริ่มก่อตัวเป็นรูปร่างขึ้น ธรรมชาติการเคลื่อนที่ของดวงอาทิตย์ ดวงจันทร์ และโลก นำไปสู่แนวคิดเชิงปรัชญาเพื่อพยายามอธิบายปรากฏการณ์เหล่านั้น ความเชื่อดั้งเดิมคือโลกเป็นศูนย์กลางของจักรวาล โดยมีดวงอาทิตย์ ดวงจันทร์ และดวงดาวต่างๆ เคลื่อนที่ไปโดยรอบ แนวคิดนี้เรียกว่า แบบจำลองแบบโลกเป็นศูนย์กลางจักรวาล (geocentric model)
มีการค้นพบทางดาราศาสตร์ที่สำคัญไม่มากนักก่อนการประดิษฐ์กล้องโทรทรรศน์ ตัวอย่างการค้นพบเช่น ชาวจีนสามารถประเมินความเอียงของแกนโลกได้ประมาณหนึ่งพันปีก่อนคริสตกาล ชาวบาบิโลนค้นพบว่าปรากฏการณ์จันทรคราสจะเกิดขึ้นซ้ำเป็นช่วงเวลา เรียกว่า วงรอบซารอส[6] และช่วงสองร้อยปีก่อนคริสตกาล ฮิปปาร์คัส นักดาราศาสตร์ชาวกรีก สามารถคำนวณขนาดและระยะห่างของดวงจันทร์ได้[7]
ตลอดช่วงยุคกลาง การค้นพบทางดาราศาสตร์ในยุโรปกลางมีน้อยมากจนกระทั่งถึงคริสต์ศตวรรษที่ 13 แต่มีการค้นพบใหม่ๆ มากมายในโลกอาหรับและภูมิภาคอื่นของโลก มีนักดาราศาสตร์ชาวอาหรับหลายคนที่มีชื่อเสียงและสร้างผลงานสำคัญแก่วิทยาการด้านนี้ เช่น Al-Battani และ Thebit รวมถึงคนอื่นๆ ที่ค้นพบและตั้งชื่อให้แก่ดวงดาวด้วยภาษาอารบิก ชื่อดวงดาวเหล่านี้ยังคงมีที่ใช้อยู่จนถึงปัจจุบัน[8]
การปฏิวัติทางวิทยาศาสตร์
ในยุคเรอเนซองส์ นิโคเลาส์ โคเปอร์นิคัส ได้นำเสนอแนวคิดแบบจำลองแบบดวงอาทิตย์เป็นศูนย์กลางจักรวาล (heliocentric model) ซึ่งถูกต่อต้านอย่างมากจากศาสนจักร ทว่าได้รับการยืนยันรับรองจากงานศึกษาของกาลิเลโอ กาลิเลอี และ โยฮันเนส เคปเลอร์ โดยที่กาลิเลโอได้ประดิษฐ์กล้องโทรทรรศน์หักเหแสงแบบใหม่ขึ้นในปี ค.ศ. 1609 ทำให้สามารถเฝ้าสังเกตดวงดาวและนำผลจากการสังเกตมาช่วยยืนยันแนวคิดนี้เคปเลอร์ได้คิดค้นระบบแบบใหม่ขึ้นโดยปรับปรุงจากแบบจำลองเดิมของโคเปอร์นิคัส ทำให้รายละเอียดการโคจรต่างๆ ของดาวเคราะห์และดวงอาทิตย์ที่ศูนย์กลางสมบูรณ์ถูกต้องมากยิ่งขึ้น แต่เคปเลอร์ก็ไม่ประสบความสำเร็จในการนำเสนอทฤษฎีนี้เนื่องจากกฎหมายในยุคสมัยนั้น จนกระทั่งต่อมาถึงยุคสมัยของเซอร์ ไอแซค นิวตัน ผู้คิดค้นหลักกลศาสตร์ท้องฟ้าและกฎแรงโน้มถ่วงซึ่งสามารถอธิบายการเคลื่อนที่ของดาวเคราะห์ได้อย่างสมบูรณ์ นิวตันยังได้คิดค้นกล้องโทรทรรศน์แบบสะท้อนแสงขึ้นด้วย
การค้นพบใหม่ๆ เกิดขึ้นเรื่อยๆ พร้อมไปกับการพัฒนาขนาดและคุณภาพของกล้องโทรทรรศน์ที่ดียิ่งขึ้น มีการจัดทำรายชื่อดาวอย่างละเอียดเป็นครั้งแรกโดย ลาซายล์ ต่อมานักดาราศาสตร์ชื่อ วิลเลียม เฮอร์เชล ได้จัดทำรายการโดยละเอียดของเนบิวลาและกระจุกดาว ค.ศ. 1781 มีการค้นพบดาวยูเรนัส ซึ่งเป็นการค้นพบดาวเคราะห์ดวงใหม่เป็นครั้งแรก ค.ศ. 1838 มีการประกาศระยะทางระหว่างดาวเป็นครั้งแรกโดยฟรีดดริค เบสเซล หลังจากตรวจพบพารัลแลกซ์ของดาว 61 Cygni
ระหว่างคริสต์ศตวรรษที่ 19 ออยเลอร์ คลาเราต์ และดาเลมเบิร์ต ได้คิดค้นคณิตศาสตร์เกี่ยวกับปัญหาสามวัตถุ (three-body problem หรือ n-body problem) ทำให้การประมาณการเคลื่อนที่ของดวงจันทร์และดาวเคราะห์สามารถทำได้แม่นยำขึ้น งานชิ้นนี้ได้รับการปรับปรุงต่อมาโดย ลากรองจ์ และ ลาปลาส ทำให้สามารถประเมินมวลของดาวเคราะห์และดวงจันทร์ได้
การค้นพบสำคัญทางดาราศาสตร์ประสบความสำเร็จมากขึ้นเมื่อมีเทคโนโลยีใหม่ๆ เช่น การถ่ายภาพ และสเปกโตรสโคป เราทราบว่าดวงดาวต่างๆ ที่แท้เป็นดาวฤกษ์ที่มีลักษณะคล้ายคลึงกับดวงอาทิตย์ของเรานั่นเอง แต่มีอุณหภูมิ มวล และขนาดที่แตกต่างกันไป[10]
การค้นพบว่า ดาราจักรของเราหรือดาราจักรทางช้างเผือกนี้ เป็นกลุ่มของดาวฤกษ์ที่รวมตัวอยู่ด้วยกัน เพิ่งเกิดขึ้นในคริสต์ศตวรรษที่ 20 นี้เอง พร้อมกับการค้นพบการมีอยู่ของดาราจักรอื่นๆ ต่อมาจึงมีการค้นพบว่า เอกภพกำลังขยายตัว โดยดาราจักรต่างๆ กำลังเคลื่อนที่ห่างออกจากเรา การศึกษาดาราศาสตร์ยุคใหม่ยังค้นพบวัตถุท้องฟ้าใหม่ๆ อีกหลายชนิด เช่น เควซาร์ พัลซาร์ เบลซาร์ และดาราจักรวิทยุ ผลจากการค้นพบเหล่านี้นำไปสู่การพัฒนาทฤษฎีทางฟิสิกส์เพื่ออธิบายปรากฏการณ์ของวัตถุเหล่านี้เปรียบเทียบกับวัตถุประหลาดอื่นๆ เช่น หลุมดำ และดาวนิวตรอน ศาสตร์ทางด้านฟิสิกส์จักรวาลวิทยามีความก้าวหน้าอย่างมากตลอดคริสต์ศตวรรษที่ 20 แบบจำลองบิกแบงได้รับการสนับสนุนจากหลักฐานต่างๆ ที่ค้นพบโดยนักดาราศาสตร์และนักฟิสิกส์ เช่น การแผ่รังสีไมโครเวฟพื้นหลังของจักรวาล กฎของฮับเบิล และการที่มีธาตุต่างๆ มากมายอย่างไม่คาดคิดในจักรวาลภายนอก
ดาราศาสตร์เชิงสังเกตการณ์
- ในทางดาราศาสตร์ สารสนเทศส่วนใหญ่ได้จากการตรวจหาและวิเคราะห์โฟตอนซึ่งเป็นการแผ่รังสีแม่เหล็กไฟฟ้า[11] แต่อาจได้จากข้อมูลที่มากับรังสีคอสมิก นิวตริโน ดาวตก และในอนาคตอันใกล้อาจได้จากคลื่นความโน้มถ่วง
ดาราศาสตร์วิทยุ
- ดาราศาสตร์วิทยุเป็นการตรวจหาการแผ่รังสีในความยาวคลื่นที่ยาวกว่า 1 มิลลิเมตร (ระดับมิลลิเมตรถึงเดคาเมตร)[12 เป็นการศึกษาดาราศาสตร์ที่แตกต่างจากการศึกษาดาราศาสตร์เชิงสังเกตการณ์รูปแบบอื่นๆ เพราะเป็นการศึกษาคลื่นวิทยุซึ่งถือว่าเป็นคลื่นจริงๆ มากกว่าเป็นการศึกษาอนุภาคโฟตอน จึงสามารถตรวจวัดได้ทั้งแอมปลิจูดและเฟสของคลื่นวิทยุซึ่งจะทำได้ยากกว่ากับคลื่นที่มีความยาวคลื่นต่ำกว่านี้]
วัตถุดาราศาสตร์ที่สามารถสังเกตได้ในช่วงคลื่นวิทยุมีมากมาย รวมไปถึงซูเปอร์โนวา แก๊สระหว่างดาว พัลซาร์ และนิวเคลียสดาราจักรกัมมันต์[13]
ดาราศาสตร์เชิงแสง
- การสังเกตการณ์ดาราศาสตร์เชิงแสงเป็นการศึกษาดาราศาสตร์ที่เก่าแก่ที่สุด[14 คือการสังเกตการณ์ท้องฟ้าด้วยดวงตามนุษย์ โดยอาศัยเครื่องมือช่วยบ้างเช่น กล้องโทรทรรศน์ ภาพที่มองเห็นถูกบันทึกเอาไว้โดยการวาด จนกระทั่งช่วงปลายคริสต์ศตวรรษที่ 19 และตลอดคริสต์ศตวรรษที่ 20 จึงมีการบันทึกภาพสังเกตการณ์ด้วยเครื่องมือถ่ายภาพ ภาพสังเกตการณ์ยุคใหม่มักใช้อุปกรณ์ตรวจจับแบบดิจิตอล ที่นิยมอย่างมากคืออุปกรณ์จับภาพแบบซีซีดี แม้ว่าแสงที่ตามองเห็นจะมีความยาวคลื่นอยู่ระหว่าง 4000 Å ถึง 7000 Å (400-700 nm)[14] แต่อุปกรณ์ตรวจจับเหล่านี้ก็มักจะมีความสามารถสังเกตภาพที่มีการแผ่รังสีแบบใกล้อัลตราไวโอเลต และใกล้อินฟราเรดได้ด้วย
ดาราศาสตร์อินฟราเรด
- ดาราศาสตร์อินฟราเรด เป็นการตรวจหาและวิเคราะห์การแผ่รังสีในช่วงคลื่นอินฟราเรด (คือช่วงความยาวคลื่นที่ยาวกว่าแสงสีแดง) ยกเว้นในช่วงคลื่นที่ใกล้เคียงกับแสงที่ตามองเห็น การแผ่รังสีอินฟราเรดจะถูกชั้นบรรยากาศของโลกดูดซับไปมากแล้วชั้นบรรยากาศจะปลดปล่อยรังสีอินฟราเรดออกมาแทน ดังนั้นการสังเกตการณ์ในช่วงคลื่นอินฟราเรดจึงจำเป็นต้องทำที่ระดับบรรยากาศที่สูงและแห้ง หรือออกไปสังเกตการณ์ในอวกาศ การศึกษาดาราศาสตร์ในช่วงคลื่นอินฟราเรดมีประโยชน์มากในการศึกษาวัตถุที่เย็นเกินกว่าจะแผ่รังสีคลื่นแสงที่ตามองเห็นออกมาได้ เช่น ดาวเคราะห์ และแผ่นจานดาวฤกษ์ (circumstellar disk) ยิ่งคลื่นอินฟราเรดมีความยาวคลื่นมาก จะสามารถเดินทางผ่านกลุ่มเมฆฝุ่นได้ดีกว่าแสงที่ตามองเห็นมาก ทำให้เราสามารถเฝ้าสังเกตดาวฤกษ์เกิดใหม่ในเมฆโมเลกุลและในใจกลางของดาราจักรต่างๆ ได้[15] โมเลกุลบางชนิดปลดปล่อยคลื่นอินฟราเรดออกมาแรงมาก ซึ่งทำให้เราสามารถศึกษาลักษณะทางเคมีในอวกาศได้ เช่น การตรวจพบน้ำบนดาวหาง เป็นต้น[16]
ดาราศาสตร์พลังงานสูง
ดาราศาสตร์รังสีอัลตราไวโอเลต
- ดาราศาสตร์รังสีอัลตราไวโอเลตเป็นการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นสั้นกว่าแสงม่วง คือประมาณ 10-3200 Å (10-320 นาโนเมตร)[12] แสงที่ความยาวคลื่นนี้จะถูกชั้นบรรยากาศของโลกดูดซับไป ดังนั้นการสังเกตการณ์จึงต้องกระทำที่ชั้นบรรยากาศรอบนอก หรือในห้วงอวกาศ การศึกษาดาราศาสตร์รังสีอัลตราไวโอเลตจะใช้ในการศึกษาการแผ่รังสีความร้อนและเส้นการกระจายตัวของสเปกตรัมจากดาวฤกษ์สีน้ำเงินร้อนจัด (ดาวโอบี) ที่ส่องสว่างมากในช่วงคลื่นนี้ รวมไปถึงดาวฤกษ์สีน้ำเงินในดาราจักรอื่นที่เป็นเป้าหมายสำคัญในการสำรวจระดับอัลตราไวโอเลต วัตถุอื่นๆ ที่มีการศึกษาแสงอัลตราไวโอเลตได้แก่ เนบิวลาดาวเคราะห์ ซากซูเปอร์โนวา และนิวเคลียสดาราจักรกัมมันต์[12] อย่างไรก็ดี แสงอัลตราไวโอเลตจะถูกฝุ่นระหว่างดวงดาวดูดซับหายไปได้ง่าย ดังนั้นการตรวจวัดแสงอัลตราไวโอเลตจากวัตถุจึงต้องนำมาปรับปรุงค่าให้ถูกต้องด้วย[12]
ดาราศาสตร์รังสีเอ็กซ์
- ดาราศาสตร์รังสีเอ็กซ์ คือการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นของรังสีเอ็กซ์ โดยทั่วไปวัตถุจะแผ่รังสีเอ็กซ์ออกมาจากการแผ่รังสีซิงโครตรอน (เกิดจากอิเล็กตรอนแกว่งตัวเป็นคาบรอบเส้นแรงสนามแม่เหล็ก) จากการแผ่ความร้อนของแก๊สเบาบางที่อุณหภูมิสูงกว่า 107 เคลวิน (เรียกว่า การแผ่รังสี bremsstrahlung) และจากการแผ่ความร้อนของแก๊สหนาแน่นที่อุณหภูมิสูงกว่า 107 เคลวิน (เรียกว่า การแผ่รังสีของวัตถุดำ)[12] คลื่นรังสีเอ็กซ์มักถูกชั้นบรรยากาศของโลกดูดซับไป ดังนั้นการสังเกตการณ์ในช่วงความยาวคลื่นของรังสีเอ็กซ์จึงทำได้โดยอาศัยบัลลูนที่ลอยตัวสูงมากๆ หรือจากจรวด หรือจากยานสำรวจอวกาศเท่านั้น แหล่งกำเนิดรังสีเอ็กซ์ที่สำคัญได้แก่ ระบบดาวคู่รังสีเอ็กซ์ พัลซาร์ ซากซูเปอร์โนวา ดาราจักรชนิดรี กระจุกดาราจักร และแกนกลางดาราจักรกัมมันต์[12]
ดาราศาสตร์รังสีแกมมา
- ดาราศาสตร์รังสีแกมมาเป็นการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นที่สั้นที่สุดของสเปกตรัมแม่เหล็กไฟฟ้า เราสามารถสังเกตการณ์รังสีแกมมาโดยตรงได้จากดาวเทียมรอบโลก เช่น หอดูดาวรังสีแกมมาคอมป์ตัน หรือกล้องโทรทรรศน์เชเรนคอฟ กล้องเชเรนคอฟไม่ได้ตรวจจับรังสีแกมมาโดยตรง แต่ตรวจจับแสงวาบจากแสงที่ตามองเห็นอันเกิดจากการที่รังสีแกมมาถูกชั้นบรรยากาศของโลกดูดซับไป[17]
การสังเกตการณ์อื่นนอกเหนือจากสเปกตรัมแม่เหล็กไฟฟ้า
นอกเหนือจากการสังเกตการณ์ดาราศาสตร์โดยการแผ่รังสีคลื่นแม่เหล็กไฟฟ้าแล้ว ยังมีการสังเกตการณ์อื่นๆ ที่ทำได้บนโลกเพื่อศึกษาวัตถุในระยะไกลมากๆในการศึกษาดาราศาสตร์นิวตริโน นักดาราศาสตร์จะใช้ห้องทดลองใต้ดินพิเศษเช่น SAGE, GALLEX, และ Kamioka II/III เพื่อทำการตรวจจับนิวตริโน ซึ่งเป็นอนุภาคที่เกิดจากดวงอาทิตย์ แต่ก็อาจพบจากซูเปอร์โนวาด้วย[ เราสามารถตรวจหารังสีคอสมิกซึ่งประกอบด้วยอนุภาคพลังงานสูงได้ขณะที่มันปะทะกับชั้นบรรยากาศของโลก เครื่องมือตรวจจับนิวตริโนในอนาคตอาจมีความสามารถพอจะตรวจจับนิวตริโนที่เกิดจากรังสีคอสมิกในลักษณะนี้ได้[12]
การเฝ้าสังเกตการณ์อีกแบบหนึ่งคือการสังเกตการณ์คลื่นความโน้มถ่วง ตัวอย่างหอสังเกตการณ์ลักษณะนี้ เช่น Laser Interferometer Gravitational Observatory (LIGO) แต่การตรวจหาคลื่นความโน้มถ่วงยังเป็นไปได้ยากอยู่[18]
นอกจากนี้ ยังมีการศึกษาดาราศาสตร์ดาวเคราะห์ ซึ่งทำได้โดยการสังเกตการณ์โดยตรงผ่านยานอวกาศ รวมถึงการเก็บข้อมูลระหว่างที่ยานเดินทางผ่านวัตถุท้องฟ้าต่างๆ โดยใช้เซ็นเซอร์ระยะไกล ใช้ยานสำรวจเล็กลงจอดบนวัตถุเป้าหมายเพื่อทำการศึกษาพื้นผิว หรือศึกษาจากตัวอย่างวัตถุที่เก็บมาจากปฏิบัติการอวกาศบางรายการที่สามารถนำชิ้นส่วนตัวอย่างกลับมาทำการวิจัยต่อได้
ดาราศาสตร์เชิงทฤษฎี
ในการศึกษาดาราศาสตร์เชิงทฤษฎี มีการใช้เครื่องมือหลากหลายชนิดรวมถึงแบบจำลองการวิเคราะห์ต่างๆ รวมถึงการจำลองแบบคำนวณทางคณิตศาสตร์ในคอมพิวเตอร์ เครื่องมือแต่ละชนิดล้วนมีประโยชน์แตกต่างกันไป แบบจำลองการวิเคราะห์ของกระบวนการจะเหมาะสำหรับใช้ศึกษาถึงสิ่งที่กำลังจะเกิดขึ้นอันสามารถสังเกตได้ ส่วนแบบจำลองคณิตศาสตร์สามารถแสดงถึงการมีอยู่จริงของปรากฏการณ์และผลกระทบต่างๆ ที่เราอาจจะมองไม่เห็น.[19]นักดาราศาสตร์ทฤษฎีล้วนกระตือรือร้นที่จะสร้างแบบจำลองทฤษฎีเพื่อระบุถึงสิ่งที่จะเกิดขึ้นต่อไปจากผลสังเกตการณ์ที่ได้รับ เพื่อช่วยให้ผู้สังเกตการณ์สามารถเลือกใช้หรือปฏิเสธแบบจำลองแต่ละชนิดได้ตามที่เหมาะสมกับข้อมูล นักดาราศาสตร์ทฤษฎียังพยายามสร้างหรือปรับปรุงแบบจำลองให้เข้ากับข้อมูลใหม่ๆ ในกรณีที่เกิดความไม่สอดคล้องกัน ก็มีแนวโน้มที่จะปรับปรุงแบบจำลองเล็กน้อยเพื่อให้เข้ากันกับข้อมูล ในบางกรณีถ้าพบข้อมูลที่ขัดแย้งกับแบบจำลองอย่างมากเมื่อเวลาผ่านไปนานๆ ก็อาจจะต้องล้มเลิกแบบจำลองนั้นไปก็ได้
หัวข้อต่างๆ ที่นักดาราศาสตร์ทฤษฎีสนใจศึกษาได้แก่ วิวัฒนาการและการเปลี่ยนแปลงของดาวฤกษ์ การก่อตัวของดาราจักร โครงสร้างขนาดใหญ่ของวัตถุในเอกภพ กำเนิดของรังสีคอสมิก ทฤษฎีสัมพัทธภาพทั่วไป และฟิสิกส์จักรวาลวิทยา รวมถึงฟิสิกส์อนุภาคในทางดาราศาสตร์ด้วย การศึกษาฟิสิกส์ดาราศาสตร์เป็นเสมือนเครื่องมือสำคัญที่ใช้ตรวจวัดคุณสมบัติของโครงสร้างขนาดใหญ่ในเอกภพ ที่ซึ่งแรงโน้มถ่วงมีบทบาทสำคัญต่อปรากฏการณ์ทางกายภาพต่างๆ และเป็นพื้นฐานของการศึกษาฟิสิกส์หลุมดำ และการศึกษาคลื่นแรงโน้มถ่วง ยังมีทฤษฎีกับแบบจำลองอื่นๆ อีกซึ่งเป็นที่ยอมรับและร่วมศึกษากันโดยทั่วไป ในจำนวนนี้รวมถึงแบบจำลองแลมบ์ดา-ซีดีเอ็ม ทฤษฎีบิกแบง การพองตัวของจักรวาล สสารมืด และ พลังงานมืด ซึ่งกำลังเป็นหัวข้อสำคัญในการศึกษาดาราศาสตร์ในปัจจุบัน
ตัวอย่างหัวข้อการศึกษาดาราศาสตร์เชิงทฤษฎี มีดังนี้
กระบวนการทางฟิสิกส์ | เครื่องมือทางดาราศาสตร์ | แบบจำลองทางทฤษฎี | การทำนายปรากฏการณ์ |
ความโน้มถ่วง | กล้องโทรทรรศน์วิทยุ | วิวัฒนาการของดาวฤกษ์ | การสิ้นอายุขัยของดาวฤกษ์ |
นิวเคลียร์ฟิวชั่น | กล้องโทรทรรศน์อวกาศฮับเบิล | การขยายตัวของเอกภพ | อายุของเอกภพ |
บิกแบง | สเปกโตรสโกปี | การพองตัวของจักรวาล | ความแบนของเอกภพ |
ความผันผวนควอนตัม | ดาราศาสตร์รังสีเอ็กซ์ | ทฤษฎีสัมพัทธภาพทั่วไป | หลุมดำที่ใจกลางดาราจักรแอนดรอเมดา |
การยุบตัวของความโน้มถ่วง | การเกิดของธาตุต่าง ๆ | ||
สาขาวิชาหลักของดาราศาสตร์
ดาราศาสตร์สุริยะ
- ดวงอาทิตย์ เป็นเป้าหมายการศึกษาทางดาราศาสตร์ยอดนิยมแห่งหนึ่ง อยู่ห่างจากโลกไปประมาณ 8 นาทีแสง เป็นดาวฤกษ์ซึ่งอยู่ในแถบลำดับหลักโดยเป็นดาวแคระประเภท G2 V มีอายุประมาณ 4.6 พันล้านปี ดวงอาทิตย์ของเรานี้ไม่นับว่าเป็นดาวแปรแสง แต่มีความเปลี่ยนแปลงในการส่องสว่างอยู่เป็นระยะอันเนื่องจากจากรอบปรากฏของจุดดับบนดวงอาทิตย์ อันเป็นบริเวณที่พื้นผิวดวงอาทิตย์มีอุณหภูมิต่ำกว่าพื้นผิวอื่นๆ อันเนื่องมาจากผลของความเข้มข้นสนามแม่เหล็ก[21]
พื้นผิวรอบนอกของดวงอาทิตย์ที่เรามองเห็นเรียกว่า โฟโตสเฟียร์ เหนือพื้นผิวนี้เป็นชั้นบางๆ เรียกชื่อว่า โครโมสเฟียร์ จากนั้นเป็นชั้นเปลี่ยนผ่านซึ่งมีอุณหภูมิเพิ่มสูงขึ้นอย่างมาก ชั้นนอกสุดมีอุณหภูมิสูงที่สุด เรียกว่า โคโรนา
ใจกลางของดวงอาทิตย์เรียกว่าย่านแกนกลาง เป็นเขตที่มีอุณหภูมิและความดันมากพอจะทำให้เกิดปฏิกิริยานิวเคลียร์ฟิวชั่น เหนือจากย่านแกนกลางเรียกว่าย่านแผ่รังสี (radiation zone) เป็นที่ซึ่งพลาสมาแผ่คลื่นพลังงานออกมาในรูปของรังสี ชั้นนอกออกมาเป็นย่านพาความร้อน (convection zone) ซึ่งสสารแก๊สจะเปลี่ยนพลังงานกลายไปเป็นแก๊ส เชื่อว่าย่านพาความร้อนนี้เป็นกำเนิดของสนามแม่เหล็กที่ทำให้เกิดจุดดับบนดวงอาทิตย์[21]
ลมสุริยะเกิดจากอนุภาคของพลาสมาที่ไหลออกจากดวงอาทิตย์ ซึ่งจะแผ่ออกไปจนกระทั่งถึงแนว heliopausเมื่อลมสุริยะทำปฏิกิริยากับสนามแม่เหล็กของโลก ทำให้เกิดแนวการแผ่รังสีแวนอัลเลนและออโรร่า ในตำแหน่งที่เส้นแรงสนามแม่เหล็กโลกไหลเวียนในชั้นบรรยากาศ[24]
วิทยาศาสตร์ดาวเคราะห์
- วิทยาศาสตร์ดาวเคราะห์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับองค์ประกอบของดาวเคราะห์ ดวงจันทร์ ดาวเคราะห์แคระ ดาวหาง ดาวเคราะห์น้อย และวัตถุท้องฟ้าอื่นๆ ที่โคจรรอบดวงอาทิตย์ ตลอดจนถึงบรรดาดาวเคราะห์นอกระบบด้วย วัตถุในระบบสุริยะจะเป็นที่นิยมศึกษาค้นคว้ามากกว่า ในช่วงแรกสามารถสังเกตการณ์ได้ผ่านกล้องโทรทรรศน์ ต่อมาจึงใช้การสังเกตการณ์โดยยานอวกาศมาช่วย การศึกษาสาขานี้ทำให้เราเข้าใจการเกิดและวิวัฒนาการของระบบดาวเคราะห์ได้ดีขึ้น แม้จะมีการค้นพบใหม่ๆ เกิดขึ้นตลอดเวลาก็ตาม[25]
ดาวเคราะห์ก่อตัวขึ้นจากแผ่นจานฝุ่นที่หมุนวนรอบๆ ดวงอาทิตย์ เมื่อผ่านกระบวนการต่างๆ นานาเช่น การดึงดูดของแรงโน้มถ่วง การปะทะ การแตกสลาย และการรวมตัวกัน แผ่นจานฝุ่นเหล่านั้นก็ก่อตัวเป็นรูปร่างที่เรียกว่า ดาวเคราะห์ก่อนเกิด (protoplanet) แรงดันการแผ่รังสีของลมสุริยะจะพัดพาเอาสสารที่ไม่สามารถรวมตัวกันติดให้กระจายหายไป คงเหลือแต่ส่วนของดาวเคราะห์ที่มีมวลมากพอจะดึงดูดบรรยากาศชั้นแก๊สของตัวเอาไว้ได้ ดาวเคราะห์ใหม่เหล่านี้ยังมีการดึงดูดและปลดปล่อยสสารในตัวตลอดช่วงเวลาที่ถูกเศษสะเก็ดดาวย่อยๆ ปะทะตลอดเวลา การปะทะเหล่านี้ทำให้เกิดหลุมบ่อบนพื้นผิวดาวเคราะห์ดั่งเช่นที่ปรากฏบนพื้นผิวดวงจันทร์ ผลจากการปะทะนี้ส่วนหนึ่งอาจทำให้ดาวเคราะห์ก่อนเกิดแตกชิ้นส่วนออกมาและกลายไปเป็นดวงจันทร์ของมันก็ได้]
เมื่อดาวเคราะห์เหล่านี้มีมวลมากพอ โดยรวมเอาสสารที่มีความหนาแน่นแบบต่างๆ เข้าไว้ด้วยกัน กระบวนการนี้ทำให้ดาวเคราะห์ก่อตัวเป็นดาวแบบต่างๆ คือแกนกลางเป็นหิน หรือโลหะ ล้อมรอบด้วยชั้นเปลือก และพื้นผิวภายนอก แกนกลางของดาวเคราะห์อาจเป็นของแข็งหรือของเหลวก็ได้ แกนกลางของดาวเคราะห์บางดวงสามารถสร้างสนามแม่เหล็กของตัวเองขึ้นมาได้ ซึ่งช่วยปกป้องชั้นบรรยากาศของดาวเคราะห์ดวงนั้นๆ จากผลกระทบของลมสุริยะ[28]
ความร้อนภายในของดาวเคราะห์หรือดวงจันทร์เป็นผลจากการปะทะกันที่ทำให้เกิดโครงร่างและสารกัมมันตรังสี (เช่น ยูเรเนียม ธอเรียม และ 26Alดาวเคราะห์และดวงจันทร์บางดวงสะสมความร้อนไว้มากพอจะทำให้เกิดกระบวนการทางธรณีวิทยาเช่น ภูเขาไฟและแผ่นดินไหว ส่วนพวกที่สามารถสะสมชั้นบรรยากาศของตัวเองได้ ก็จะมีกระบวนการกัดกร่อนของลมและน้ำ ดาวเคราะห์ที่เล็กกว่าจะเย็นตัวลงเร็วกว่า และปรากฏการณ์ทางธรณีวิทยาจะหยุดลงเว้นแต่หลุมบ่อจากการถูกชนเท่านั้น[29]
ดาราศาสตร์ดาวฤกษ์
- การศึกษาเกี่ยวกับดาวฤกษ์และวิวัฒนาการของดาวฤกษ์เป็นพื้นฐานสำคัญในการทำความเข้าใจกับเอกภพ วิทยาการฟิสิกส์ดาราศาสตร์ของดวงดาวเกิดขึ้นมาจากการสังเกตการณ์และการพยายามสร้างทฤษฎีเพื่อทำความเข้าใจ รวมถึงการสร้างแบบจำลองคอมพิวเตอร์เพื่อศึกษาผลที่เกิดขึ้นภายในดวงดาว
คุณลักษณะต่างๆ ของดาวฤกษ์ขึ้นอยู่กับมวลเริ่มต้นของดาวฤกษ์นั้นๆ ดาวฤกษ์ที่มีมวลมากจะมีความส่องสว่างสูง และจะใช้เชื้อเพลิงไฮโดรเจนจากแกนกลางของมันเองไปอย่างรวดเร็ว เมื่อเวลาผ่านไป เชื้อเพลิงไฮโดรเจนเหล่านี้จะค่อยๆ แปรเปลี่ยนกลายไปเป็นฮีเลียม ดาวฤกษ์ก็จะวิวัฒนาการไป การเกิดฟิวชั่นของฮีเลียมจะต้องใช้อุณหภูมิแกนกลางที่สูงกว่า ดังนั้นดาวฤกษ์นั้นก็จะขยายตัวใหญ่ขึ้น ขณะเดียวกันก็เพิ่มความหนาแน่นแกนกลางของตัวเองด้วย ดาวแดงยักษ์จะมีช่วงอายุที่สั้นก่อนที่เชื้อเพลิงฮีเลียมจะถูกเผาผลาญหมดไป ดาวฤกษ์ที่มีมวลมากกว่าจะผ่านกระบวนการวิวัฒนาการได้มากกว่า โดยที่มีธาตุหนักหลอมรวมอยู่ในตัวเพิ่มมากขึ้น
การสิ้นสุดชะตากรรมของดาวฤกษ์ก็ขึ้นอยู่กับมวลของมันเช่นกัน ดาวฤกษ์ที่มีมวลมากกว่าดวงอาทิตย์ของเรามากกว่า 8 เท่าจะแตกสลายกลายไปเป็นซูเปอร์โนวา ขณะที่ดาวฤกษ์ที่เล็กกว่าจะกลายไปเป็นเนบิวลาดาวเคราะห์ และวิวัฒนาการต่อไปเป็นดาวแคระขาว ซากของซูเปอร์โนวาคือดาวนิวตรอนที่หนาแน่น หรือในกรณีที่ดาวฤกษ์นั้นมีมวลมากกว่าดวงอาทิตย์ของเรากว่า 3 เท่า มันจะกลายไปเป็นหลุมดำ[3] สำหรับดาวฤกษ์ที่เป็นระบบดาวคู่อาจมีวิวัฒนาการที่แตกต่างออกไป เช่นอาจมีการถ่ายเทมวลแก่กันแล้วกลายเป็นดาวแคระขาวแบบคู่ซึ่งสามารถจะกลายไปเป็นซูเปอร์โนวาได้ การเกิดเนบิวลาดาวเคราะห์และซูเปอร์โนวาเป็นการกระจายสสารธาตุออกไปสู่สสารระหว่างดาว หากไม่มีกระบวนการนี้แล้ว ดาวฤกษ์ใหม่ๆ (และระบบดาวเคราะห์ของมัน) ก็จะก่อตัวขึ้นมาจากเพียงไฮโดรเจนกับฮีเลียมเท่านั้น
ดาราศาสตร์ดาราจักร
- ระบบสุริยะของเราโคจรอยู่ภายในดาราจักรทางช้างเผือก ซึ่งเป็นดาราจักรชนิดก้นหอยมีคาน และเป็นดาราจักรสมาชิกแห่งหนึ่งในกลุ่มท้องถิ่น ดาราจักรนี้เป็นกลุ่มแก๊ส ฝุ่น ดาวฤกษ์ และวัตถุอื่นๆ อีกจำนวนมากที่หมุนวนไปรอบกัน โดยมีแรงโน้มถ่วงกระทำต่อกันทำให้ดึงดูดกันไว้ ตำแหน่งของโลกอยู่ที่แขนฝุ่นกังหันด้านนอกข้างหนึ่งของดาราจักร ดังนั้นจึงมีบางส่วนของทางช้างเผือกที่ถูกบังไว้และไม่สามารถมองเห็นได้
ที่ว่างระหว่างดวงดาวมีสสารระหว่างดาวบรรจุอยู่ เป็นย่านที่มีวัตถุต่างๆ อยู่อย่างเบาบางมาก บริเวณที่หนาแน่นที่สุดคือเมฆโมเลกุล ซึ่งประกอบด้วยโมเลกุลของไฮโดรเจนและธาตุอื่นๆ ที่เป็นย่านกำเนิดของดาวฤกษ์ ในช่วงแรกจะมีการก่อตัวเป็นเนบิวลามืดรูปร่างประหลาดก่อน จากนั้นเมื่อมีความหนาแน่นเพิ่มขึ้นมากๆ ก็จะเกิดการแตกสลายแล้วก่อตัวใหม่เป็นดาวฤกษ์ก่อนเกิด[34]
เมื่อมีดาวฤกษ์มวลมากปรากฏขึ้นมากเข้า มันจะเปลี่ยนเมฆโมเลกุลให้กลายเป็นบริเวณเอชทูซึ่งเป็นย่านเรืองแสงเต็มไปด้วยแก๊สและพลาสมา ลมดาวฤกษ์กับการระเบิดซูเปอร์โนวาของดาวเหล่านี้จะทำให้กลุ่มเมฆกระจายตัวกันออกไป แล้วเหลือแต่เพียงกลุ่มของดาวฤกษ์จำนวนหนึ่งที่เกาะกลุ่มกันเป็นกระจุกดาวเปิดอายุน้อยๆ เมื่อเวลาผ่านไปกระจุกดาวเหล่านี้ก็จะค่อยๆ กระจายห่างกันออกไป แล้วกลายไปเป็นประชากรดาวดวงหนึ่งในทางช้างเผือก
การศึกษาจลนศาสตร์ของมวลสารในทางช้างเผือกและดาราจักรต่างๆ ทำให้เราทราบว่า มวลที่มีอยู่ในดาราจักรนั้นแท้จริงมีมากกว่าสิ่งที่เรามองเห็น ทฤษฎีเกี่ยวกับสสารมืดจึงเกิดขึ้นเพื่ออธิบายปรากฏการณ์นี้ แม้ว่าธรรมชาติของสสารมืดยังคงเป็นสิ่งลึกลับไม่มีใครอธิบายได้[35]
ดาราศาสตร์ดาราจักรนอกระบบ
- การศึกษาวัตถุที่อยู่ในห้วงอวกาศอื่นนอกเหนือจากดาราจักรของเรา เป็นการศึกษาเกี่ยวกับกำเนิดและวิวัฒนาการของดาราจักร การศึกษารูปร่างลักษณะและการจัดประเภทของดาราจักร การสำรวจดาราจักรกัมมันต์ การศึกษาการจัดกลุ่มและกระจุกดาราจักร ซึ่งในหัวข้อหลังนี้มีความสำคัญอย่างยิ่งในการทำความเข้าใจกับโครงสร้างขนาดใหญ่ของจักรวาล
ลักษณะของดาราจักรคล้ายคลึงกับชื่อประเภทที่กำหนด ดาราจักรชนิดรีจะมีรูปร่างในภาคตัดขวางคล้ายคลึงกับรูปวงรี ดาวฤกษ์จะโคจรไปแบบสุ่มโดยไม่มีทิศทางที่แน่ชัด ดาราจักรประเภทนี้มักไม่ค่อยมีฝุ่นระหว่างดวงดาวหลงเหลือแล้ว ย่านกำเนิดดาวใหม่ก็ไม่มี และดาวฤกษ์ส่วนใหญ่จะมีอายุมาก เรามักพบดาราจักรชนิดรีที่บริเวณใจกลางของกระจุกดาราจักร หรืออาจเกิดขึ้นจากการที่ดาราจักรขนาดใหญ่สองแห่งปะทะแล้วรวมตัวเข้าด้วยกันก็ได้
ดาราจักรชนิดก้นหอยมักมีรูปทรงค่อนข้างแบน เหมือนแผ่นจานหมุน และส่วนใหญ่จะมีดุมหรือมีแกนรูปร่างคล้ายคานที่บริเวณใจกลาง พร้อมกับแขนก้นหอยสว่างแผ่ออกไปเป็นวง แขนก้นหอยนี้เป็นย่านของฝุ่นที่เป็นต้นกำเนิดของดาวฤกษ์ ดาวฤกษ์อายุน้อยมวลมากจะทำให้แขนนี้ส่องสว่างเป็นสีฟ้า ส่วนที่รอบนอกของดาราจักรมักเป็นกลุ่มของดาวฤกษ์อายุมาก ดาราจักรทางช้างเผือกของเราและดาราจักรแอนดรอเมดาก็เป็นดาราจักรชนิดก้นหอย
ดาราจักรไร้รูปแบบมักมีรูปร่างปรากฏไม่แน่ไม่นอน ไม่ใช่ทั้งดาราจักรชนิดรีหรือชนิดก้นหอย ประมาณหนึ่งในสี่ของจำนวนดาราจักรทั้งหมดที่พบเป็นดาราจักรชนิดไร้รูปแบบนี้ รูปร่างอันแปลกประหลาดของดาราจักรมักทำให้เกิดปฏิกิริยาแรงโน้มถ่วงแปลกๆ ขึ้นด้วย
ดาราจักรกัมมันต์คือดาราจักรที่มีการเปล่งสัญญาณพลังงานจำนวนมากออกมาจากแหล่งกำเนิดอื่นนอกเหนือจากดาวฤกษ์ ฝุ่น และแก๊ส แหล่งพลังงานนี้เป็นย่านเล็กๆ แต่หนาแน่นมากซึ่งอยู่ในแกนกลางดาราจักร โดยทั่วไปเชื่อกันว่ามีหลุมดำมวลยวดยิ่งอยู่ที่นั่นซึ่งเปล่งพลังงานรังสีออกมาเมื่อมีวัตถุใดๆ ตกลงไปในนั้น ดาราจักรวิทยุคือดาราจักรกัมมันต์ชนิดหนึ่งที่ส่องสว่างมากในช่วงสเปกตรัมของคลื่นวิทยุ มันจะเปล่งลอนของแก๊สออกมาเป็นจำนวนมาก ดาราจักรกัมมันต์ที่แผ่รังสีพลังงานสูงออกมาได้แก่ ดาราจักรเซย์เฟิร์ต เควซาร์ และเบลซาร์ เชื่อว่าเควซาร์เป็นวัตถุที่ส่องแสงสว่างมากที่สุดเท่าที่เป็นที่รู้จักในเอกภพ[37]
โครงสร้างขนาดใหญ่ของจักรวาลประกอบด้วยกลุ่มและกระจุกดาราจักรจำนวนมาก โครงสร้างนี้มีการจัดลำดับชั้นโดยที่ระดับชั้นที่ใหญ่ที่สุดคือ มหากระจุกของดาราจักร เหนือกว่านั้นมวลสารจะมีการโยงใยกันในลักษณะของใยเอกภพและกำแพงเอกภพ ส่วนที่ว่างระหว่างนั้นมีแต่สูญญากาศ[38]
จักรวาลวิทยา
- จักรวาลวิทยา (อังกฤษ: cosmology; มาจากคำในภาษากรีกว่า κοσμος "cosmos" หมายถึง เอกภพ และ λογος หมายถึง การศึกษา) เป็นการศึกษาเกี่ยวกับเอกภพทั้งหมดในภาพรวม
ตลอดช่วงเวลาการขยายตัวของเอกภพนี้ เอกภพได้ผ่านขั้นตอนของวิวัฒนาการมามากมายหลายครั้ง ในช่วงแรก ทฤษฎีคาดการณ์ว่าเอกภพน่าจะผ่านช่วงเวลาการพองตัวของจักรวาลที่รวดเร็วมหาศาล ซึ่งเป็นหนึ่งเดียวกันและเสมอกันในทุกทิศทางในสภาวะเริ่มต้น หลังจากนั้น นิวคลีโอซินทีสิสจึงทำให้เกิดธาตุต่างๆ ขึ้นมากมายในเอกภพยุคแรก
เมื่อมีอะตอมแรกเกิดขึ้น จึงมีการแผ่รังสีผ่านอวกาศ ปลดปล่อยพลังงานออกมาดั่งที่ทุกวันนี้เรามองเห็นเป็นรังสีไมโครเวฟพื้นหลังของจักรวาล เอกภพขยายตัวผ่านช่วงเวลาของยุคมืดเพราะไม่ค่อยมีแหล่งกำเนิดพลังงานของดาวฤกษ์[39]
เริ่มมีการจัดโครงสร้างลำดับชั้นของสสารขึ้นนับแต่เริ่มมีการเปลี่ยนแปลงความหนาแน่นของสสาร สสารที่รวมกลุ่มกันอยู่เป็นบริเวณหนาแน่นที่สุดกลายไปเป็นกลุ่มเมฆแก๊สและดาวฤกษ์ยุคแรกสุด ดาวฤกษ์มวลมากเหล่านี้เป็นจุดกำเนิดของกระบวนการแตกตัวทางไฟฟ้าซึ่งเชื่อว่าเป็นต้นกำเนิดของธาตุหนักมากมายที่อยู่ในเอกภพยุคเริ่มต้น
ผลจากแรงโน้มถ่วงทำให้มีการดึงดูดรวมกลุ่มกันเกิดเป็นใยเอกภพ มีช่องสูญญากาศเป็นพื้นที่ว่าง หลังจากนั้นโครงสร้างของแก๊สและฝุ่นก็ค่อยๆ รวมตัวกันเกิดเป็นดาราจักรยุคแรกเริ่ม เมื่อเวลาผ่านไป มันดึงดูดสสารต่างๆ เข้ามารวมกันมากขึ้น และมีการจัดกลุ่มโครงสร้างเข้าด้วยกันเป็นกลุ่มและกระจุกดาราจักร ซึ่งเป็นส่วนหนึ่งในโครงสร้างขนาดใหญ่คือมหากระจุกดาราจักร[40]
โครงสร้างพื้นฐานที่สุดของจักรวาลคือการมีอยู่ของสสารมืดและพลังงานมืด ในปัจจุบันเราเชื่อกันว่าทั้งสองสิ่งนี้มีอยู่จริง และเป็นส่วนประกอบถึงกว่า 96% ของความหนาแน่นทั้งหมดของเอกภพ เหตุนี้การศึกษาฟิสิกส์ในยุคใหม่จึงเป็นความพยายามทำความเข้าใจกับองค์ประกอบเหล่านี้[41]
ศาสตร์ที่เกี่ยวข้องกับสาขาอื่น
การศึกษาดาราศาสตร์และฟิสิกส์ดาราศาสตร์ที่ก้าวหน้ามากขึ้น ทำให้มีความเกี่ยวข้องกับวิทยาศาสตร์สาขาอื่นมากยิ่งขึ้น ดังนี้- โบราณดาราศาสตร์ (Archaeoastronomy) เป็นการศึกษาเกี่ยวกับวิทยาการดาราศาสตร์ในยุคโบราณหรือยุคดั้งเดิม โดยพิจารณาถึงสภาพสังคมและวัฒนธรรม อาศัยหลักฐานในทางโบราณคดีและมานุษยวิทยาเข้ามาช่วย
- ชีววิทยาดาราศาสตร์ (Astrobiology) เป็นการศึกษาการมาถึงและวิวัฒนาการของระบบชีววิทยาในเอกภพ ที่สำคัญคือการศึกษาและตรวจหาความเป็นไปได้ของสิ่งมีชีวิตในโลกอื่น
- เคมีดาราศาสตร์ (Astrochemistry) เป็นการศึกษาลักษณะทางเคมีที่พบในอวกาศ นับแต่การก่อตัว การเกิดปฏิกิริยา และการสูญสลาย มักใช้ในการศึกษาเมฆโมเลกุล รวมถึงดาวฤกษ์อุณหภูมิต่ำต่างๆ เช่น ดาวแคระน้ำตาลและดาวเคราะห์ ส่วน เคมีจักรวาล (Cosmochemistry) เป็นการศึกษาลักษณะทางเคมีที่พบในระบบสุริยะ รวมถึงกำเนิดของธาตุและการเปลี่ยนแปลงสัดส่วนของไอโซโทป ทั้งสองสาขานี้คาบเกี่ยวกันระหว่างศาสตร์ทางเคมีและดาราศาสตร์
ดาราศาสตร์สมัครเล่น
นับแต่อดีตมา นักดาราศาสตร์สมัครเล่นได้สังเกตพบวัตถุท้องฟ้าและปรากฏการณ์ทางดาราศาสตร์ที่สำคัญมากมายด้วยเครื่องมือที่พวกเขาสร้างขึ้นมาเอง เป้าหมายในการสังเกตการณ์ของนักดาราศาสตร์สมัครเล่นโดยมากได้แก่ ดวงจันทร์ ดาวเคราะห์ ดาวฤกษ์ ดาวหาง ฝนดาวตก และวัตถุในห้วงอวกาศลึกอีกจำนวนหนึ่งเช่น กระจุกดาว กระจุกดาราจักร หรือเนบิวลา สาขาวิชาย่อยสาขาหนึ่งของดาราศาสตร์สมัครเล่น คือการถ่ายภาพทางดาราศาสตร์ ซึ่งเกี่ยวข้องกับวิธีการถ่ายภาพในท้องฟ้ายามราตรี นักดาราศาสตร์สมัครเล่นส่วนมากจะเจาะจงเฝ้าสังเกตวัตถุท้องฟ้าหรือปรากฏการณ์บางอย่างที่พวกเขาสนใจเป็นพิเศษ[43]44
ส่วนใหญ่แล้วนักดาราศาสตร์สมัครเล่นจะสังเกตการณ์ดาราศาสตร์ในคลื่นที่ตามองเห็น แต่ก็มีการทดลองเล็กๆ อยู่บ้างที่กระทำในช่วงคลื่นอื่นนอกจากคลื่นที่ตามองเห็น เช่นการใช้ฟิลเตอร์แบบอินฟราเรดติดบนกล้องโทรทรรศน์ หรือการใช้กล้องโทรทรรศน์วิทยุ เป็นต้น นักดาราศาสตร์สมัครเล่นผู้บุกเบิกในการสังเกตการณ์ดาราศาสตร์วิทยุ คือ คาร์ล แจนสกี (Karl Jansky) ผู้เริ่มเฝ้าสังเกตท้องฟ้าในช่วงคลื่นวิทยุตั้งแต่คริสต์ทศวรรษ 1930 ยังมีนักดาราศาสตร์สมัครเล่นอีกจำนวนหนึ่งที่ใช้กล้องโทรทรรศน์ประดิษฐ์เองที่บ้าน หรือใช้กล้องโทรทรรศน์วิทยุที่แต่เดิมสร้างมาเพื่องานวิจัยทางดาราศาสตร์ แต่ปัจจุบันได้เปิดให้บุคคลทั่วไปเข้าไปใช้งานได้ด้วย[45]
มีบทความทางดาราศาสตร์มากมายที่ส่งมาจากนักดาราศาสตร์สมัครเล่น อันที่จริงแล้ว นี่เป็นหนึ่งในไม่กี่สาขาวิชาทางวิทยาศาสตร์ที่มือสมัครเล่นก็สามารถมีส่วนร่วมหรือเขียนบทความสำคัญๆ ขึ้นมาได้ นักดาราศาสตร์สมัครเล่นสามารถตรวจวัดวงโคจรโดยละเอียดของดาวเคราะห์ขนาดเล็กได้ พวกเขาค้นพบดาวหาง และทำการเฝ้าสังเกตดาวแปรแสง ความก้าวหน้าของเทคโนโลยีดิจิตอลทำให้นักดาราศาสตร์สมัครเล่นมีความสามารถในการถ่ายภาพทางดาราศาสตร์ได้ดียิ่งขึ้น และหลายๆ ภาพก็เป็นภาพปรากฏการณ์อันสำคัญทางดาราศาสตร์ด้วย[47]]
ปีดาราศาสตร์สากล 2009
- ปี ค.ศ. 2009 เป็นปีที่ครบรอบ 400 ปี นับจากกาลิเลโอได้ประดิษฐ์กล้องโทรทรรศน์ขึ้นเพื่อทำการสังเกตการณ์ทางดาราศาสตร์ และพบหลักฐานยืนยันแนวคิดดวงอาทิตย์เป็นศูนย์กลางจักรวาลที่นำเสนอโดย นิโคเลาส์ โคเปอร์นิคัส ไม่นานก่อนหน้านั้น การค้นพบนี้ถือเป็นการปฏิวัติแนวคิดพื้นฐานเกี่ยวกับจักรวาล และเป็นการบุกเบิกการศึกษาดาราศาสตร์ยุคใหม่โดยอาศัยกล้องโทรทรรศน์ ซึ่งมีความก้าวหน้ายิ่งขึ้นตามที่เทคโนโลยีของกล้องโทรทรรศน์พัฒนาขึ้น
50]
โลก
โลก เป็นดาวเคราะห์ที่อยู่ห่างจากดวงอาทิตย์เป็นลำดับที่สาม โดยโลกเป็นดาวเคราะห์หินขนาดใหญ่ที่สุดในระบบสุริยะ และเป็นดาวเคราะห์เพียงดวงเดียวที่วิทยาศาสตร์สมัยใหม่ยืนยันได้ว่ามีสิ่งมีชีวิตอาศัยอยู่ ดาวเคราะห์โลกถือกำเนิดขึ้นเมื่อประมาณ 4,570 ล้าน (4.57×109) ปีก่อน และหลังจากนั้นไม่นานนัก ดวงจันทร์ซึ่งเป็นดาวบริวารเพียงดวงเดียวของโลกก็ถือกำเนิดตามมา สิ่งมีชีวิตทรงภูมิปัญญาที่ครองโลกในปัจจุบันนี้คือมนุษย์
โลก มีลักษณะเป็นทรงวงรี โดย ในแนวดิ่งเส้นผ่าศูนย์กลางยาว 12,711 กม. ในแนวนอน ยาว 12,755 กม. ต่างกัน 44 กม. มีพื้นน้ำ 3 ส่วน หรือ 71% และมีพื้นดิน 1 ส่วน หรือ 29 % แกนโลกจะเอียง 23.5 องศาสัญลักษณ์ของโลกประกอบด้วยกากบาทที่ล้อมด้วยวงกลม โดยเส้นตั้งและเส้นนอนของกากบาทจะแทนเส้นเมอริเดียนและเส้นศูนย์สูตรตามลำดับ สัญลักษณ์อีกแบบของโลกจะวางกากบาทไว้เหนือวงกลมแทน (ยูนิโคด: ⊕ หรือ ♁)
ประวัติ
โลกเกิดจากการรวมตัวของอานุภาคและสิ่งแรกที่เกิดครั้งแรกคือภูเขาไฟเมื่อภูเขาไฟเย็นตัวลงจะก่อเกิดสิ่งมีชีวิตอื่นๆกำเนิดตามโครงสร้างและองค์ประกอบ
รูปร่าง
โลกมีรูปทรงกระบอกแบนขั้ว หมายความว่ามีรูปทรงกระบอกแต่บริเวณขั้วโลกทั้งสองแบนเล็กน้อย และโป่งออกทางเส้นศูนย์สูตร ความยาวรอบโลกประมาณ 40,000 กิโลเมตร มีเส้นผ่านศูนย์กลางประมาณ 12,700 กิโลเมตร จุดที่สูงที่สุดบนพื้นโลกคือ ยอดเขาเอเวอร์เรสต์ ซึ่งมีความสูง 8,848 เมตรจากระดับน้ำทะเล ส่วนจุดที่ลึกที่สุดในโลกคือ ร่องลึกก้นสมุทรมาเรียนา ซึ่งมีความลึก 10,911 เมตรจากระดับน้ำทะเล เนื่องจากโลกมีลักษณะโป่งออกทางตอนกลางคือเส้นศูนย์สูตร ทำให้จุดที่ห่างไกลจากจุดศูนย์กลางโลกคือยอดเขาชิมโบราโซ ในประเทศเอกวาดอร์[1]โครงสร้าง
เปลือกโลก
เปลือกโลก (crust) เป็นชั้นนอกสุดของโลกที่มีความหนาประมาณ 6-35 กิโลเมตร ซึ่งถือว่าเป็นชั้นที่บางที่สุดเมื่อเปรียบกับชั้นอื่นๆ เสมือนเปลือกไข่ไก่หรือเปลือกหัวหอม เปลือกโลกประกอบไปด้วยแผ่นดินและแผ่นน้ำ ซึ่งเปลือกโลกส่วนที่บางที่สุดคือส่วนที่อยู่ใต้มหาสมุทร ส่วนเปลือกโลกที่หนาที่สุดคือเปลือกโลกส่วนที่รองรับทวีปที่มีเทือกเขาที่สูงที่สุดอยู่ด้วย นอกจากนี้เปลือกโลกยังสามารถแบ่งออกเป็น 2 ชั้นคือ- ชั้นที่หนึ่ง: ชั้นหินไซอัล (sial) เป็นเปลือกโลกชั้นบนสุด ประกอบด้วยแร่ซิลิกาและอะลูมินาซึ่งเป็นหินแกรนิตชนิดหนึ่ง สำหรับบริเวณผิวของชั้นนี้จะเป็นหินตะกอน ชั้นหินไซอัลนี้มีเฉพาะเปลือกโลกส่วนที่เป็นทวีปเท่านั้น ส่วนเปลือกโลกที่อยู่ใต้ทะเลและมหาสมุทรจะไม่มีหินชั้นนี้
- ชั้นที่สอง: ชั้นหินไซมา (sima) เป็นชั้นที่อยู่ใต้หินชั้นไซอัลลงไป ส่วนใหญ่เป็นหินบะซอลต์ประกอบด้วยแร่ซิลิกา เหล็กออกไซด์และแมกนีเซียม ชั้นหินไซมานี้ห่อหุ้มทั่วทั้งพื้นโลกอยู่ในทะเลและมหาสมุทร ซึ่งต่างจากหินชั้นไซอัลที่ปกคลุมเฉพาะส่วนที่เป็นทวีป และยังมีความหนาแน่นมากกว่าชั้นหินไซอัล
แมนเทิล
แมนเทิล (mantle หรือ Earth's mantle) คือชั้นที่อยู่ถัดจากเปลือกโลกลงไป มีความหนาประมาณ 3,000 กิโลเมตร บางส่วนของหินอยู่ในสถานะหลอมเหลวเรียกว่าหินหนืด (Magma) ทำให้ชั้นแมนเทิลนี้มีความร้อนสูงมาก เนื่องจากหินหนืดมีอุณหภูมิประมาณ 800 - 4300°C ซึ่งประกอบด้วยหินอัคนีเป็นส่วนใหญ่ เช่นหินอัลตราเบสิก หินเพริโดไลต์แก่นโลก
ความหนาแน่นของดาวโลกโดยเฉลี่ยคือ 5,515 กก./ลบ.ม. ทำให้มันเป็นดาวเคราะห์ที่หนาแน่นที่สุดในระบบสุริยะ แต่ถ้าวัดเฉพาะความหนาแน่นเฉลี่ยของพื้นผิวโลกแล้ววัดได้เพียงแค่ 3,000 กก./ลบ.ม. เท่านั้น ซึ่งทำให้เกิดข้อสรุปว่า ต้องมีวัตถุอื่นๆ ที่หนาแน่นกว่าอยู่ในแก่นโลกแน่นอน ระหว่างการเกิดขึ้นของโลก ประมาณ 4.5 พันล้านปีมาแล้ว การหลอมละลายอาจทำให้เกิดสสารที่มีความหนาแน่นมากกว่าไหลเข้าไปในแกนกลางของโลก ในขณะที่สสารที่มีความหนาแน่นน้อยกว่าคลุมเปลือกโลกอยู่ ซึ่งทำให้แก่นโลก (core) มีองค์ประกอบเป็นธาตุเหล็กถึง 80%, รวมถึงนิกเกิลและธาตุที่มีน้ำหนักที่เบากว่าอื่นๆ แต่ในขณะที่สสารที่มีความหนาแน่นสูงอื่นๆ เช่นตะกั่วและยูเรเนียม มีอยู่น้อยเกินกว่าที่จะผสานรวมเข้ากับธาตุที่เบากว่าได้ และทำให้สสารเหล่านั้นคงที่อยู่บนเปลือกโลก แก่นโลกแบ่งได้ออกเป็น 2 ชั้นได้แก่- แก่นโลกชั้นนอก (outer core) มีความหนาจากผิวโลกประมาณ 2,900 - 5,000 กิโลเมตร ประกอบด้วยธาตุเหล็กและนิกเกิลในสภาพที่หลอมละลาย และมีความร้อนสูง มีอุณหภูมิประมาณ 6200 - 6400 มีความหนาแน่นสัมพัทธ์ 12.0 และส่วนนี้มีสถานะเป็นของเหลว
- แก่นโลกชั้นใน (inner core) เป็นส่วนที่อยู่ใจกลางโลกพอดี มีรัศมีประมาณ 1,000 กิโลเมตร มีอุณหภูมิประมาณ 4,300 - 6,200 และมีความกดดันมหาศาล ทำให้ส่วนนี้จึงมีสถานะเป็นของแข็ง ประกอบด้วยธาตุเหล็กและนิกเกิลที่อยู่ในสภาพที่เป็นของแข็ง มีความหนาแน่นสัมพัทธ์ 17.0
สภาพบรรยากาศ
สภาพอากาศของโลก คือ การถูกห่อหุ้มด้วยชั้นบรรยากาศ ซึ่งมีทั้งหมด 5 ชั้น ได้แก่- โทรโพสเฟียร์ เริ่มตั้งแต่ 0-10 กิโลเมตรจากผิวโลก บรรยกาศมีไอน้ำ เมฆ หมอกซึ่งมีความหนาแน่นมาก และมีการแปรปรวนของอากาศอยู่ตลอดเวลา
- สตราโตสเฟียร์ เริ่มตั้งแต่ 10-35 กิโลเมตรจากผิวโลก บรรยากาศชั้นนี้แถบจะไม่เปลื่ยนแปลงจากโทรโพสเฟียร์ยกเว้นมีผงฝุ่นเพิ่มมาเล็กน้อย
- เมโสสเฟียร์ เริ่มตั้งแต่35-80 กิโลเมตร จากผิวโลก บรรยากาศมีก๊าซโอโซนอยู่มากซึ่งจะช่วยสกัดแสงอัลตร้า ไวโอเรต (UV) จาก ดวงอาทิตย์ไม่ให้มาถึงพื้นโลกมากเกินไป
- ไอโอโนสเฟียร์ เริ่มตั้งแต่ 80-600 กิโลเมตร จากผิวโลก บรรยากาศมีออกซิเจน จางมากไม่เหมาะกับมนุษย์
- เอกโซสเฟียร์ เริ่มตั้งแต่ 600กิโลเมตรขึ้นไปจากผิวโลก บรรยากาศมีออกซิเจนจางมากๆ และมีก๊าซฮีเลียมและไฮโดรเจนอยู่เป็นส่วนมาก โดยมีชั้นติดต่อกับอวกาศ
วงโคจรและการหมุนรอบตัวเอง
โลกหมุนรอบตัวเอง 24 ชั่วโมงในหนึ่งวัน แต่นักวิทยาศาสตร์คำนวณได้ 23.56 ชั่วโมง แต่จะใช้ 24 ชั่งโมงเป็นหลัก และ 365 วันในหนึ่งปี โลกอยู่ห่างจากดวงอาทิตย์ประมาณ 150 ล้านไมล์ และเคลื่อนที่ด้วยความเร็ว 30 กิโลเมตรต่อวินาที หรือ 108,000 กิโลเมตรต่อชั่วโมง[2]วงโคจรของดวงจันทร์ อยู่ห่างจากโลก 250,000 ไมล์ ดวงจันทร์จะหันพื้นผิวด้านเดียวเข้าหาโลกอยู่เสมอ และโคจรรอบโลกใช้เวลาประมาณหนึ่งเดือน
โลกเป็นส่วนหนึ่งของระบบสุริยะ และมีวงโคจรรอบดวงอาทิตย์ร่วมกับวัตถุขนาดเล็กกว่าพันชิ้น และดาวเคราะห์อีก 8 ดวง ดวงอาทิตย์และระบบสุริยะเคลื่อนที่ผ่านส่วนแขนออริออน ดาราจักรทางช้างเผือก และจะเคลื่อนที่ครบรอบในอีก 10,000 ปีข้างหน้า[3]
ดาวบริวาร
- ดูบทความหลักที่ ดวงจันทร์
การอยู่อาศัย
เป็นถิ่นที่อยู่เดียวในเอกภพที่ค้นพบสิ่งมีชีวิต กลุ่มประชากรที่มีมากที่สุด คือ แบคทีเรีย กลุ่มประชากรที่มีผลมากที่สุดถ้าหายไปจากโลก คือ พืช และกลุ่มประชากรที่มีผลต่อสิ่งแวดล้อมคือ ไพรเมต โดยกลุ่มนี้มีเพียงสายพันธุ์เดียวผลต่อโลกทั้งการปรับปรุงสภาพแวดล้อม และการทำลาย สภาพแวดล้อม คือ มนุษย์อวกาศ
หลักไมล์สู่อวกาศ
- 4.6 กม. (15,000 ฟุต) - FAA กำหนดให้มีออกซิเจนเสริมสำหรับนักบินและผู้โดยสาร
- 5.3 กม. (17,400 ฟุต) - ครึ่งหนึ่งของชั้นบรรยากาศโลกอยู่
- 16 กม. (52,500 ฟุต) - ต้องการห้องความดันหรือชุดความดัน
- 18 กม. (59,000 ฟุต) - สิ้นสุดบรรยากาศชั้นโทรโพสเฟียร์
- 20 กม. (65,600 ฟุต) - น้ำที่อุณหภูมิห้องเดือดเมื่อปราศจากภาชนะความดัน (ความคิดส่วนใหญ่ที่ว่า ของเหลวในร่างกายน่าจะเริ่มเดือดในระดับความสูงนี้เป็นความคิดที่ผิด เพราะว่า ขีดจำกัดของร่างกายสร้างความดันเพียงพอที่จะยับยั้งการเดือดที่สภาพนี้)
- 24 กม. (78,700 ฟุต) - สิ้นสุดขอบเขตการทำงานของระบบปรับความกดดันของเครื่องบินทั่วไป
- 32 กม. (105,000 ฟุต) - สิ้นสุดขอบเขตการทำงานของจรวดเทอร์โบ
- 45 กม. (148,000 ฟุต) - สิ้นสุดขอบเขตการทำงานของเครื่องยนต์ไอพ่น
- 50 กม. (164,000 ฟุต) - สิ้นสุดบรรยากาศชั้นสตราโตสเฟียร์
- 80 กม. (262,000 ฟุต) - สิ้นสุดบรรยากาศชั้นเมโซสเฟียร์
- 100 กม . (328,000 ฟุต)- สิ้นสุดขอบเขตการยกตัวด้วยปีกเครื่องบิน